31 research outputs found

    RhoA activation participates in rearrangement of processing bodies and release of nucleated AU-rich mRNAs

    Get PDF
    Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Formation Control of Mobile Robots Based on Interconnected Positive Systems

    No full text
    International audienceThis paper deals with formation control of mobile robots based on interconnected positive systems with SISO subsystems where each robot has a nonlinear dynamics of a MIMO subsystem. To linearize the dynamics, this paper introduces a virtual vehicle of the robot. Then a feedback linearization and a local feedback law transform each dynamics of the virtual vehicle into two SISO positive and stable linear systems. Consequently, the dynamics of the virtual vehicles satisfy the properties of the interconnected positive systems. Experimental results as well as numerical examples including leader-follower formation control for the mobile robots are illustrated
    corecore