230 research outputs found

    On recursive least-squares filtering algorithms and implementations

    Get PDF
    In many real-time signal processing applications, fast and numerically stable algorithms for solving least-squares problems are necessary and important. In particular, under non-stationary conditions, these algorithms must be able to adapt themselves to reflect the changes in the system and take appropriate adjustments to achieve optimum performances. Among existing algorithms, the QR-decomposition (QRD)-based recursive least-squares (RLS) methods have been shown to be useful and effective for adaptive signal processing. In order to increase the speed of processing and achieve high throughput rate, many algorithms are being vectorized and/or pipelined to facilitate high degrees of parallelism. A time-recursive formulation of RLS filtering employing block QRD will be considered first. Several methods, including a new non-continuous windowing scheme based on selectively rejecting contaminated data, were investigated for adaptive processing. Based on systolic triarrays, many other forms of systolic arrays are shown to be capable of implementing different algorithms. Various updating and downdating systolic algorithms and architectures for RLS filtering are examined and compared in details, which include Householder reflector, Gram-Schmidt procedure, and Givens rotation. A unified approach encompassing existing square-root-free algorithms is also proposed. For the sinusoidal spectrum estimation problem, a judicious method of separating the noise from the signal is of great interest. Various truncated QR methods are proposed for this purpose and compared to the truncated SVD method. Computer simulations provided for detailed comparisons show the effectiveness of these methods. This thesis deals with fundamental issues of numerical stability, computational efficiency, adaptivity, and VLSI implementation for the RLS filtering problems. In all, various new and modified algorithms and architectures are proposed and analyzed; the significance of any of the new method depends crucially on specific application

    The relations between 3-year changes in physical fitness and academic performance in nationally representative sample of junior high school students

    Get PDF
    Abstract The objective of the current study was to examine the relationship between different components of physical fitness across 3 years of junior high school with academic performance assessed at the end of the period. Two nationwide representative datasets were used. The first was the physical fitness profile assessed at the beginning of each of the three school years. The second contained the scores on a standardized test administered at the end of the third year. All data were standardized by calculating percentile rank (PR). Students were classified as “High-fit” if their fitness scores ≧ top 25% PR on the age- and sex-adjusted norms. All other students were classified as “not high-fit”. The relationships between fitness and exam performance were tested adjusting for sex, body mass index, and level of urbanization. Students who were in the high-fit group in both years 1 and 3 academically outperformed those who were outside this classification during both assessments. The degree of outperformance was greatest for those who were aerobically fit, followed by those who were high-fit in terms of muscular endurance, muscular strength, and flexibility, respectively. It is therefore concluded that the relationship between physical fitness and academic performance in Taiwanese junior high school students is strongest in the case of aerobic fitness

    Majorana Zero-modes and Topological Phases of Multi-flavored Jackiw-Rebbi model

    Get PDF
    Motivated by the recent Kitaev's K-theory analysis of topological insulators and superconductors, we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge conjugation and time reversal symmetries, we classify the topological phases of the model. In particular, we find that there exist Z\mathbf{Z} Majorana zero-modes hosted by the hedgehogs/t'Hooft-Polyakov monopoles, if the model has a T2=1T^2=1 time reversal symmetry. Guided by the K-theory results, we then explicitly show that a single Majorana zero mode solution exists for the SU(2) doublet fermions in some co-dimensional one planes of the mass parameter space. It turns out we can see the existence of none or a single zero mode when the fermion doublet is only two. We then take a step further to consider four-fermion case and find there can be zero, one or two normalizable zero mode in some particular choices of mass matrices. Our results also indicate that a single normalizable Majorana zero mode can be compatible with the cancellation of SU(2) Witten anomaly.Comment: 29 pages, 3 figures; v2, typos correcte

    Dynamic Transcript Profiling of Candida Albicans Infection in Zebrafish: a Pathogen-Host Interaction Study

    Get PDF
    Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. This was followed by massive hemorrhaging toward the end stage of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis

    Advances in Microfluidics and Lab-on-a-Chip Technologies

    Full text link
    Advances in molecular biology are enabling rapid and efficient analyses for effective intervention in domains such as biology research, infectious disease management, food safety, and biodefense. The emergence of microfluidics and nanotechnologies has enabled both new capabilities and instrument sizes practical for point-of-care. It has also introduced new functionality, enhanced sensitivity, and reduced the time and cost involved in conventional molecular diagnostic techniques. This chapter reviews the application of microfluidics for molecular diagnostics methods such as nucleic acid amplification, next-generation sequencing, high resolution melting analysis, cytogenetics, protein detection and analysis, and cell sorting. We also review microfluidic sample preparation platforms applied to molecular diagnostics and targeted to sample-in, answer-out capabilities

    The N-Terminal Amphipathic Helix of the Topological Specificity Factor MinE Is Associated with Shaping Membrane Curvature

    Get PDF
    Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE2–9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature

    Hypoxia Inhibits Osteogenesis in Human Mesenchymal Stem Cells through Direct Regulation of RUNX2 by TWIST

    Get PDF
    Bone loss induced by hypoxia is associated with various pathophysiological conditions, however, little is known about the effects of hypoxia and related signaling pathways on osteoblast differentiation and bone formation. Because bone marrow-derived mesenchymal stem cells (MSCs) survive under hypoxic conditions and readily differentiate into osteoblasts by standard induction protocols, they are a good in vitro model to study the effects of hypoxia on osteoblast differentiation.Using human MSCs, we discovered TWIST, a downstream target of HIF-1α, was induced under hypoxia and acted as a transcription repressor of RUNX2 through binding to the E-box located on the promoter of type 1 RUNX2. Suppression of type 1 RUNX2 by TWIST under hypoxia further inhibited the expression of BMP2, type 2 RUNX2 and downstream targets of RUNX2 in MSCs.Our findings point to the important role of hypoxia-mediated signalling in osteogenic differentiation in MSCs through direct regulation of RUNX2 by TWIST, and provide a method for modifying MSC osteogenesis upon application of these cells in fracture healing and bone reconstruction

    Repressive Effects of Resveratrol on Androgen Receptor Transcriptional Activity

    Get PDF
    The chemopreventive effects of resveratrol (RSV) on prostate cancer have been well established; the androgen receptor (AR) plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity.The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+) cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(-) cells serving as controls. AR(+) cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP) assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE).AR in the AR (+) stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment.We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding
    • …
    corecore