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Abstract

Motivated by the recent Kitaev’s K-theory analysis of topological insulators and superconductors,

we adopt the same framework to study the topological phase structure of Jackiw-Rebbi model

in 3+1 dimensions. According to the K-theory analysis based on the properties of the charge

conjugation and time reversal symmetries, we classify the topological phases of the model. In

particular, we find that there exist Z Majorana zero-modes hosted by the hedgehogs/t’Hooft-

Polyakov monopoles, if the model has a T 2 = 1 time reversal symmetry. Guided by the K-theory

results, we then explicitly show that a single Majorana zero mode solution exists for the SU(2)

doublet fermions in some co-dimensional one planes of the mass parameter space. It turns out

we can see the existence of none or a single zero mode when the fermion doublet is only two.

We then take a step further to consider four-fermion case and find there can be zero, one or two

normalizable zero mode in some particular choices of mass matrices. Our results also indicate

that a single normalizable Majorana zero mode can be compatible with the cancellation of SU(2)

Witten anomaly.
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I. INTRODUCTION

In the recent years, Majorana zero-modes in condensed matter systems have attracted

much attention due to its topological and/or symmetry protected degeneracy (similar to the

topological ground state degeneracy of topological ordered states). The degeneracy leads

to topological and/or symmetry protected non-Abelian geometric phases (up to an overall

phase) as we braid the defects that carry Majorana zero-modes. Note that the Hilbert space

of these zero-modes are highly entangled [1], implying the underlying topological nature

against local perturbations (that may repect certain symmetry in the symmetry protected

cases). Thus, these Majorana zero-modes, if exist, can help to realize the robust quantum

computation through protected non-Abelian geometric phases. (We would like to point out

that those protected non-Abelian geometric phases do not correspond to the standard non-
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Abelian statistics. This is because the defects that carry Majorana zero-modes have a long

range interaction and the overall phase of the non-Abelian geometric phases may depend the

exchange paths. So in this paper, we will call such non-Abelian geometric phases, defined

up to an overall phase, projective non-Abelian statistics.) .

These fermionic zero-modes appear near the core of some topological defects, which pre-

serve either charge conjugation (particle-hole) symmetry or time reversal symmetry. Espe-

cially, such objects in 3+1 dimensions have been proposed by Teo and Kane in [2]. It then

opens the possibility to realize the non-trivial projective non-Abelian statistics, the so called

projective ribbon statistic in [3] in 3+1 dimensions. Note that, unlike the standard non-

Abelian statistics, the non-trivial projective non-Abelian statistics can exist beyond 2+1

dimensions. Moreover, the more general classifications of all possible Majorana zero-modes

in the disordered systems of any dimensions has been done in [3–9] based on K-theory anal-

ysis in the context of the topological insulators and superconductors [10–15]. The above

mentioned 3+1 dimensional Majorana zero modes are one of the examples in this general

classification schemes.

On the other hand, in the community of high energy physics the relations between

fermionic zero modes and topological defects have been well-studied, and it results in the

connection with the index theorem [16]. The pioneer works relevant for our discussions here

are the Dirac zero modes around 3+1 dimensional monopole (or hedgehog) by Jackiw and

Rebbi [17] and around 2+1 dimensional vortex by Jackiw and Rossi [18]. The zero modes

of Majorana fermions, however, are only found in the cases of a kink in one dimension [17]

and a vortex background in two dimensions [18]. It is then interesting to see if there exist

possible Majorana zero modes in the Jackiw-Rebbi models, which are similar to the ones in

Jackiw-Rossi model, as long as the particle-hole symmetry or the time reversal symmetry

are preserved by the background topological defects. Once this is possible, it is also inter-

esting to explore the possible connection between the models in high energy physics and the

models for topological insulators and superconductors.

A general consideration along the aforementioned direction was first given by Hořava

in [19], trying to link the stability of Fermi liquids to the one of D-branes. Some works

along this direction in a more specific context have been done in [20–22]. In these works, the

relation between Jackiw-Rebbi or Jackiw-Rossi models and the Bogoliubov-de Gennes (BdG)

model for topological superconductor is explored and explicitly constructed. However, the
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role of the SU(2) internal symmetry in the Jackiw-Rebbi model is not fully addressed in

these works because the corresponding internal symmetry is not obviously implemented in

the BdG model. In this paper, we will further explore this issue by studying the role of

SU(2) symmetry in the charge conjugation and time reversal symmetry operations. In this

way, we can find out the topological nature of the fermionic zero modes in the framework of

K-theory analysis, and then explore the topological phase structures.

In general, the topological defects such as monopoles can be realized and classified by the

pattern of spontaneous symmetry breaking. For example, the monopole in the Jackiw-Rebbi

model is the ’t Hooft-Polyakov one, in which the SU(2) gauge symmetry is broken to U(1)

by the Higgs vev of the hedgehog pattern. Thus, the Majorana zero modes, if exist, can

be understood as the low energy phenomenon due to the background of topological defects.

One would hope that the setting of the theory is also well-defined at high energy regime.

This concern has been recently raised by McGreevy and Swingle in [23] for the two-flavored

Jackiw-Rebbi model with nonzero Dirac masses. In this case, the theory of odd number of

Weyl fermions will be plagued by the Witten anomaly [24]. However, as shown in [23] it

is usually difficult to obtain odd number of normalizable Majorana zero modes out of even

number Weyl fermions so that the expected projective non-Abelian statistics is in vain. One

naive way to bypass this no-go is simply not gauging the internal SU(2) symmetry. Though

the presence of the normalizable Majorana zero modes will not be affected by ungauging the

internal symmetry, the relative motion of the hedgehog defects on which the Majorana zero

modes live will require infinite energy. The reason is that without the cancellation from the

gauge fields, the potential between the defects due to the Higgs scalars is confining. If so,

these Majorana zero modes will be non-dynamical, not mentioning the nontrivial statistics.

It seems that it is impossible to lift the above no-go result for the 3+1 dimensional Ma-

jorana zero modes with nontrivial statistics. However, we will see that in the analysis of

[23] the charge conjugation and time reversal symmetries are not imposed. In this paper we

will re-examine the issue by requiring the charge conjugation and time reversal symmetries,

which then restrict the flavor mass matrices. It turns out that these discrete symmetries are

essential to have Majorana zero modes classified by integer Z according to the K-theory anal-

ysis. Indeed, we find that the no-go theorem is lifted by the existence of 0, 1, 2 normalizable

Majorana zero modes for some ranges of mass parameters in the 4-flavored Jackiw-Rebbi

model, which is UV-complete without Witten anomaly.
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In general, the symmetry of the point defects determine the possible structures of the

zero-modes on the defect. In this paper, we consider the defects that have a time reversal

symmetry (generated by T ) and Z2 symmetry (generated by C). The Z2 symmetry can be

realized as a charge conjugation symmetry. If T and C satisfy T 2 = C2 = 1 and TC = CT ,

the symmetry group of the defect is given by G+
++(T,C) (using the notation of [7]). From

the table VII in [7], we see that the different structures of the zero-modes are classified by

Z. In this paper, we show that the different structures simply correspond to the number of

Majorana zero-modes.

If instead T and C satisfy T 2 = (−)NF , C2 = 1 and TC = CT (where NF is the total

fermion number operator), then the symmetry group of the defect is given by G+
−+(T,C).

From the table VII in [7], we find that the different structures of the zero-modes are classified

by Z2, corresponding to even or odd numbers of Majorana zero-modes.

Our paper will be organized as follows. In the next section we introduce the Jackiw-Rebbi

model with many fermion species/flavors and their charge conjugation (C), time-reversal (T)

and parity (P) symmetries. These symmetries also provide a starting point for the review of

K-theory analysis on classifications of the topological insulators/superconductors in section

III. In section IV we solve the Majorana zero modes for the SU(2) doublet fermions directly

from the equations of motion with two and four flavors. We find that there exists a single

normalizable Majorana zero mode in both cases. This lifts the no-go result discussed in [23].

We also delineate the phase boundary in the mass parameter space. Finally we conclude

with some comments in section V. Technical details about the general choices of the mass

matrices’s parametrization in four-flavor case will be given in Appendix.

II. THE JACKIW-REBBI MODEL WITH MULTI-FLAVORED FERMIONS

In this section we will introduce the models for classifying the topologically ordered phases

in the context of high energy physics, and also later for finding the Majorana zero modes lo-

calized on the point defect. These Majorana zero modes are argued to obey the non-Abelian

statistics [3, 23]. The classification of the topologically ordered phases is relevant to finding

the fermionic zero modes on the point defects, as suggested by the bulk/edge correspondence

of the topological insulators/superconductors [15]. This correspondence relates the pattern

of the edge gapless excitations of a topological insulator/superconductor to the one of the
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bulk gapped excitations, for more conceptual discussion see [25].

A. The Jackiw-Rebbi model and the discrete symmetries

As shown for examples in [5–8, 25], the classifications of the topological insulators or

superconductors are tied to the discrete symmetries of the fermionic systems such as the

charge conjugation (C), parity (P) and time reversal (T) symmetry. To further discuss the

role of discrete symmetries and be more specific, we first introduce the Jackiw-Rebbi model,

which describes Dirac fermions coupled to a gauge field and a scalar field in the SU(2)

fundamental/adjoint representation. The Lagrangian density is

L = ψ̄Iiγ
µDµψI −ΛIJ ψ̄IΦ

aT aψJ −mIJ ψ̄IψJ , (2.1)

where Dµ ≡ ∂µ − igAaµT
a is the covariant derivative with Aaµ the gauge field, T a’s are

the SU(2) generators and Φa’s are the scalar fields. The space-time indices are denoted by

µ, ν = 0, 1, 2, 3, the SU(2) indices by a, b = 1, 2, 3 and the flavor indices by I, J = 1, 2, · · · , N .

The flavor matrices Λ and m are hermitian. Our convention for gamma matrices is the same

as the one in [26] , and we will show how to transform this chiral representation to a real

representation of gamma matrices later. In this study, we are interested mainly in classifying

the bulk topologically ordered phases and then use the results as the guidance in searching

for the normalizable fermionic zero modes on the point defect. Since we are only interested

in the pattern of these zero modes not their relative dynamics, we will then ignore the gauge

fields which play no role for our consideration.

The Hamiltonian derived from the above Lagrangian (without gauge field) is

Ĥ ≡ ψ†hψ= ψ†nI
(
−iαk∂k ⊗ 1nm ⊗ 1IJ + β ⊗ ΦaT anm ⊗ΛIJ + β ⊗ 1nm ⊗mIJ

)
ψmJ ,

≡ ψ†(−i)
(
αk∂k + M

)
ψ , (2.2)

where β ≡ γ0, αk ≡ γ0γk for k = 1, 2, 3. This form of the Hamiltonian can be understood

as an effective Hamiltonian near the Dirac cone of some electron systems in condensed

matters. The constant mass matrix M is used to gap the system to obtain topological

insulators/superconductors provided that there are no zero eigenvalues for M. If the scalar

Φa is topologically non-trivial, there may exist some normalizable zero mode solutions which

satisfy:

h(x)ψ0(x) = 0. (2.3)
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Later, we will first classify the these zero modes by K-theory analysis and then use the

results as the guidance to solve (2.3) for the zero modes explicitly.

To be specific, in this paper we will consider a particular kind of scalar condensate,

the hedgehog configurations as considered in the Jackiw-Rebbi model [17, 23], for which

Φa(r) = r̂aφ(r) 1. The core of this point-like defect may host various patterns of normalizable

fermionic zero modes depending on what kind of the discrete symmetries or some U(1)

symmetries are preserved by the Hamiltonian (2.2).

Three discrete symmetries can be realized in the Jackiw-Rebbi model: parity P, charge

conjugation C and time-reversal symmetry T 2. They are defined by (up to a phase)

P̂ ψ̂(t, ~x)P̂−1 = Upψ̂(t,−~x), (2.4)

Ĉψ̂(t, ~x)Ĉ−1 = Ucψ̂
∗(t, ~x), (2.5)

T̂ ψ̂(t, ~x)T̂−1 = Utψ̂(−t, ~x). (2.6)

The Uc, Ut, and Up are unitary matrices, which can be written in the chiral representation

as following:

• for SU(2) doublet, i.e., T a = 1
2
τa,

Uc≡ (−iγ2γ5)⊗ (iτ 2)⊗ 1, (2.7a)

Ut≡ (γ1γ3γ5)⊗ (iτ 2)⊗ 1, (2.7b)

Up≡ (γ0)⊗ 1⊗ 1, (2.7c)

where τa’s are Pauli matrices;

• for SU(2) triplet, i.e., (T a)nm = iεnam,

Uc≡ (−iγ2)⊗ 1⊗ 1, (2.8a)

Ut≡ (γ1γ3)⊗ 1⊗ 1, (2.8b)

Up≡ (γ0)⊗ 1⊗ 1. (2.8c)

1 A typical profile for φ(r) is φ(r) = v tanh(k0r) with a constant parameter k0 and the vacuum value of

scalar field v. We will use this profile to perform the numerical calculations.
2 Again, we assume these symmetry transformations do not involve the flavor space.
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The invariance of the Hamiltonian (2.2) under these transformations give

UT
c h
∗ = −hUT

c , (2.9a)

U †t h
∗ = hU †t , (2.9b)

Uph = hUp, (2.9c)

respectively. From (2.7), (2.8) and (2.9), the mass matrices Λ and m have to take the form:

Λ∗ = Λ, m∗ = −m (2.10a)

for SU(2) doublet, and

Λ∗ = −Λ, m∗ = m (2.10b)

for SU(2) triplet. On the other hand, as considering a real (Majorana) fermion, the Dirac

spinor is subjected to the reality condition:

ψ̂c(t, ~x) = Ucψ̂
∗(t, ~x) = ψ̂(t, ~x). (2.11)

The explicit form of Uc in (2.7a) (also (2.8a)) will be needed later when solving the

Majorana zero modes on the point defect, and the parity sT ≡ UtU
∗
t will be relevant for

classifying Majorana zero modes on the point defect based on K-theory analysis.

Some remarks are in order. Firstly, we shall emphasis that the specific form (2.2), rather

than the general form commonly considered in [6, 7], is governed by the Lorentz invariance.

The special structure of Dirac gamma matrices then assures that parity symmetry is given

by (2.7c) (also (2.8c)) since the scalar is treated as a background which does not transform at

all under symmetry operations. We also assume CTP theorem so that if Uc is also specified,

then Ut will be fixed accordingly.

Secondly, the fermions considered here are fundamental particles, rather than the com-

posite ones with non-trivial constituents or spin-orbital interaction which are commonly

realized in condensed matter physics. The lack of nontrivial internal structure for ψ then

demands that UcU
∗
c = +1 if we would like to obtain a real fermion from a complex one with

the supplementary condition (2.11), which indicates the importance of charge conjugation

symmetry. This can be easily verified by observing (ψc)c = U∗cUcψ = ψ, which implies

UcU
∗
c = +1. Our choices of Uc in (2.7a) and (2.8a) are conformed to this condition.
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Thirdly, suppose we are in a real representation in which the condition (2.11) becomes

ψ̃ = ψ̃∗. This implies that the Hamiltonian h̃ is anti-symmetric and purely imaginary by

Fermi statistics and hermiticity of h̃. This condition and (2.10) require that

γ̃µ = γ̃µ∗, γ̃0τa
∗

= −γ̃0τa (2.12a)

for SU(2) doublet, and

γ̃µ = −γ̃µ∗, γ̃0τa
∗

= γ̃0τa (2.12b)

for SU(2) triplet. We will show how to transform the chiral representation (2.7) into this

“tilde” representation in the next subsection.

B. The real representation gamma matrices and real fermions

When discussing symmetry operators such as (2.7) and (2.8), we use the expression

of chiral representation of Dirac gamma matrices. We did this in purpose since the chiral

representation gives us a great simplification when it comes to finding the zero mode solutions

[17, 23]. It is, however, important to have a real representation (in the literal sense) for

these symmetries if we adopt the K-theory to classify the bulk topologically ordered phases

and the edge zero (gapless) modes for Jackiw-Rebbi model. In this subsection, we show

how to transform the symmetry matrices from chiral (complex) representation into a real

representation for SU(2) doublet case. This gives an explicit example for the more general

discussion given in [25]. For SU(2) triplet fermions, the explicit construction has been given

in [20].

For a SU(2) doublet fermion, the scalar field Φ = Φaτa/2 is in a pseudo-real represen-

tation, i.e., BΦ∗B† = −Φ with the unitary matrix B satisfying BB∗ = −1. The obvious

choice is B = iτ 2 which explains the appearance of iτ 2 in (2.7). In order to impose a consis-

tent reality condition on the spinor in (2.11), however, we also have to choose a pseudo-real

representation for the Dirac gamma matrices in which there exists an unitary matrix A with

A(γµ)∗A† = ±γµ and AA∗ = −1. We can then always write A as iσ2⊗ 12×2 and combine A

and B by a tensor product:

U ′c = iσ2 ⊗ 12×2 ⊗ iτ 2. (2.13)
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It is obvious that U ′cU
′∗
c = +1. For such a symmetric matrix U ′c, we can always bring U ′c to

a new representation Ũc by a Takagi transformation in which Ũc = SU ′cS
T = 18×8 [25]. The

only task is to find the unitary matrices S.

Let us consider an unitary matrix S:

S8×8 =

 P− −iP+

iP+ −P−

 (2.14a)

where P± ≡ 1
2
(1 ± σ2τ 2). Note P 2

± = P± is a projection operator with the properties

P+ + P− = 1, P±P∓ = 0, P T
± = P± and P †± = P±. It is easy to check S is unitary and

Ũc = SU ′cS
T indeed gives us an identity matrix, i.e.,

Ũc= SU ′cS
T (2.14b)

=

 P− −iP+

iP+ −P−

 (iσ2)(iτ 2) 0

0 (iσ2)(iτ 2)

 P− +iP+

−iP+ −P−


=

 (P+)2 + (P−)2 0

0 (P+)2 + (P−)2

 = 18×8.

Before we apply (2.14) to transform our chiral representation (2.7a) to the “combined”

Majorana representation which mixes up the Lorentz and SU(2) gauge indices, we have to

rotate the chiral representation of Dirac gamma matrices into the form (2.13). This can be

easily done by

U ′c = V UcV
T , with an unitary V = 1√

2

 1 1

−i i


4×4L

⊗ 12×2. (2.15)

where the subscript L indicates the matrix only act on Lorentz space. Hence we can trans-

form our chiral representation to a Majorana representation by applying S and V sequentially

Ũc = (SV )Uc(SV )T , Ũt = (SV )∗Ut(SV )†, (2.16a)

ψ̃ = (SV )ψ, γ̃µ = (SV )γµ(SV )†, µ = 0, 1, 2, 3. (2.16b)

Note that γ̃µ and γ̃0τa, as promised in (2.12), are purely real and imaginary:

γ̃0 =

 −σ2τ 2 0

0 σ2τ 2

 , γ̃1 =

 iσ3τ 2 0

0 iσ3τ 2

 , (2.17a)

γ̃2 =

 0 iσ2

iσ2 0

 , γ̃3 =

 −iσ1τ 2 0

0 −iσ1τ 2

 , (2.17b)
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γ̃0τa =
1

2

 −σ2(τ 2τa − τ 2(τa)∗) −i(τa + (τa)∗)

i(τa + (τa)∗) σ2(τ 2τa − τ 2(τa)∗)

 . (2.17c)

Also, the reality condition (2.11) becomes ψ̃c = ψ̃∗ = ψ̃ in this “tilde” representation. This

can be verified as follows. We first write the 4-component Dirac spinor as

ψ =

 ξ

η

 . (2.18a)

By (2.11) we arrive

ψc = (−iγ2γ5)⊗ (iτ 2)ψ∗ = ψ =

 ξ

(iσ2)(iτ 2)ξ∗

 . (2.18b)

On the other hand, from (2.16) we have

ψ̃= SV

 ξ

(iσ2)(iτ 2)ξ∗

 (2.18c)

= −
√

2

 σ2τ 2(Re ξ)

Im ξ


where Re ξ and Im ξ are real and imaginary part of complex spinor ξ. From (2.18c), it is

clear that ψ̃∗ = ψ̃. This then completes our tasks in this subsection: seeking an unitary

matrix (SV ) to transform the gamma matrices to the real representation and the reality

condition (2.11) becomes ψ̃c = ψ̃∗ = ψ̃. However, since the equation of motion is much more

simple and easy to deal with in the chiral representation, we will still work in this convention

when solving the zero mode functions in Section IV.

III. CLASSIFICATION OF TOPOLOGICAL PHASES OF JACKIW-REBBI MODEL

In this section we will classify the topological phases and the edge zero modes of the

multi-flavored Jackiw-Rebbi model introduced above. This classification is based on the

scheme of K-theory analysis first done by Kitaev in [6]. However, we will mainly follow the

conventions given in [7] for our discussions, in which more general results in the context of

condensed matters are considered. On the other hand, the more general results in context

of high energy physics and AdS/CFT correspondence, see [25].
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The K-theory analysis is used to classify the gapped systems, i.e., deth 6= 0, and the basic

idea is what types of Clifford algebra can be formed for a given Hamiltonian h of massive

free fermions in which all structures are fixed except the mass matrix M. The structure

of these Clifford algebras yields a configuration space M for M, whose homotopy groups

πn(M)’s reflect the topological pattern of the bulk gapped/edge gapless excitations.

To see the structure of the aforementioned structure of Clifford algebra, we first impose

the “flat-band” condition h2 = 1 since only the numbers of positive and negative eigenvalues

but not their magnitudes are relevant as far as the topological property is concerned. This

flat-band condition for Hamiltonian h then is translated to

{αi ⊗ 1, αj ⊗ 1}= 2δij ⊗ 1, (3.1a)

{αi,M}= 0, (3.1b)

M2= −1⊗ 1. (3.1c)

where the 1 here is the unit matrix containing gauge and flavor indices. Here we note that

for a relativistic theory (3.1a) and (3.1b) are trivially satisfied owing to Lorentz invariance.

Here an important point should be emphasized. When the flat-band condition h2 = 1 is

imposed, the space dependence of M (the hedgehog here) is turned off. In other words, we

only focus on the matrix structure of M when it comes to the Kitaev’s K-theory analysis.

By doing this, the bulk/edge correspondence is implied manifestly, i.e., we are classifying

the same mass matrix structure for bulk (no defect) and edge (defect present) Hamiltonian

h. As we will see in the next section, the zero mode indeed lives on the defect while different

structures of M gives us different number of zero modes.

We first consider the classification of the topological phases for the complex fermions. For

such cases, the flat-band condition (3.1) is all we need to classify the topologically ordered

phases. This is because there is no way to form an enlarged Clifford algebra even if there

exist some symmetries as we are going to discuss next. From (3.1), the configuration space

M is determined by the complex Clifford algebra Cl(3, 1) with all αi’s fixed, and is denoted

byM = C3 in the convention of [7]. It then gives a trivial topological fermionic phase since

π0(C3) = 0 [6, 7, 25].

Now we turn to the case for the real fermions. Naively, if the discrete symmetries are

not involved, then the configuration space is M = R0
3 which again yields only trivial phase

as π0(R0
3) = 0. Here the pair (p, q) is referred to the signature of the Clifford algebra
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Cl(p, q), and for the results of the homotopy groups of πn(Cp) and πn(Rq
p), please check the

summarized tables in [6, 7, 25].

However, in this paper the model we consider does respect the charge conjugation and

time reversal symmetries. In such a case, we apply these transformations (2.9) to (2.2) then

yields the conditions on αi’s and M as follows:

αiUp = −Upαi, (3.2a)

MUp = UpM, (3.2b)

αiUc = Uc(α
i)∗, (3.2c)

MUc = UcM
∗, (3.2d)

(αi)∗Ut = −Utαi, (3.2e)

M∗Ut = −UtM. (3.2f)

where Up, Uc and Ut are unitary matrices.

To find the Clifford algebra for K-theory classification, some discussions are in order. Let

us observe that it is impossible for Up to become one of the generators of an enlarged Clifford

algebra since it is only anti-commutative with αi rather than both αi and M. Therefore, we

will ignore parity hereafter.

There are chances for either Uc or Ut to join (3.1) to form a larger Clifford algebra. The

only obstacle is the complex conjugate on αi and M as shown in (3.2). However, if there

exists real representation for all the generators appear in (3.2), then the resultant Clifford

algebra can be enlarged than the one without these symmetries. As shown in II B we indeed

can find such a representation for Jackiw-Rebbi model. Moreover, in such representation

Uc = 1 so that it becomes trivial and plays no role in forming the enlarged Clifford algebra.

However, we should caution the readers that there are more general consideration for which

Uc cannot be transformed into unity in the context of condensed matter physics.

Moreover, in such a Majorana representation, all the gamma matrices are all either real

or pure imaginary so that αi’s, M and Ut constructed from them will also be all either real.

In such a case, Ut then anti-commutes with αi’s and M as seen from (3.2e) and (3.2f), it

then yields an enlarged Clifford algebra. The structure of the resultant Clifford algebra will

then only depend on the parity parameter

sT ≡ UtU
∗
t = U2

t . (3.3)
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Fermions m Λ Uc Ut sT M bulk phases point defect

Doublet Im Re (iγ2γ5)⊗ (iτ2) (γ1γ3γ5)⊗ (iτ2) +1 R0
4 0 Z

Triplet Re Im (−iγ2) γ1γ3 −1 R1
3 Z Z2

TABLE I. The summary of symmetry operators and topological class for real fermions in Jackiw-

Rebbi model.

In the second equality we have assumed Ut to be real, so are αi’s and M 3.

It is straightforward to show that sT is invariant under Takagi transformation. Thus

it is easy to check that sT = 1 for SU(2) doublet, and sT = −1 for SU(2) triplet. For

sT = 1, in the convention of [7] the resultant Clifford algebra is Cl(4, 1) so that M = R0
4

and π0(R0
4) = 0 yields only trivial bulk phase. On the other hand, for sT = −1 the resultant

Clifford algebra is Cl(3, 2) so that M = R1
3. Using the result of Bott’s periodicity theorem

for K-theory, i.e.,

Rq
p = R0

p−q mod 8, (3.4)

πn(R0
p) = π0(R0

p−n)., (3.5)

the bulk topological phases for real SU(2) triplet fermions are classified by π0(R1
3) =

π0(R0
2) = Z.

Moreover, we can also classify the edge Majorana zero modes with the help of (3.5). This

is assured by the bulk/edge correspondence for the topological insulators/superconductors,

which here is manifested as

πd−db−1(M) (3.6)

for the edge modes living on db-dimensional defect. We are interested in the Majorana zero

modes living on the point defect in this paper, db = 0 and then the classification is given

by π2(R0
4) = Z for sT = 1 and π2(R1

3) = Z2 for sT = −1. These results are summarized in

Table I. Note that if there is no symmetry, the Majorana edge modes on the point defect is

classified by π2(R0
3) = Z2, however, in this paper we will not solve the zero modes for such

a case.

3 Due to the hermiticity of αi and anti-hermiticity of M, αi’s are symmetric and M is anti-symmetric if

they are all real.
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Before we close this section, we should note that the K-theory analysis discussed here can

only guide us to find the number of zero modes hosted on the topological defect. However,

it cannot tell us the detailed state space structure of these zero modes. This issue has been

addressed in 2+1 Jackiw-Rossi model with the background consisting of integer number of

vortices in [27]. A general formula for the dimensionality of state space is given explicitly and

the mode operators with fermion number conservation are realized by a restricted Clifford

algebra which shares some similarities with K-thoery approach.

IV. MAJORANA ZERO MODES IN TWO- AND FOUR-FLAVORED JACKIW-

REBBI MODEL

In this section, we discuss the structure of mass matrices of Majorana fermions in the

SU(2) doublet representation in Jackiw-Rebbi model and solve the coupled differential equa-

tion numerically. We find that there exists either no normalizable zero mode or a single Ma-

jorana zero mode in two-flavor case, which depends on the Dirac mass parameters. When

the number of fermion species becomes four, we can find that the number of normalizable

zero modes may be zero, one or two which also depends on the Dirac mass parameters.

As we discussed in Section III, the number of normalizable zero modes hosted on the

point defect is expected to be the same as the one indicated by K-theory analysis. Hence,

the criteria to write down the appropriate mass matrices m and Λ in question are flat-band

condition (3.1c) and charge conjugation symmetry (2.9a), which gives

{Λ,m} = 0, (4.1a)

Λ2 + m2 = 1, (4.1b)

Λ∗ = Λ, m∗ = −m. (4.1c)

For the given scalar condensate Φa(r) (a hedgehog here) and proper boundary conditions

for the mode function, (4.1) are all we need to find normalizable zero modes indicated by

K-theory analysis in Section III.
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A. Equations of motion for the zero mode

The equation of motion for the Majorana zero modes governed by the Hamiltonian (2.2)

is (
αkpk1nm1IJ + βMnmIJ

)
ψnJ = 0, (4.2a)

with the reality condition on the Dirac field

ψ = ψc = Ucψ
∗ =

 ξ

iσ2iτ 2ξ∗

 . (4.2b)

as shown in (2.18b).

To proceed, we notice that the SU(2)Lorentz × SU(2)internal symmetry has been broken

explicitly by the background scalar field to the diagonal SU(2), the subgroup which mixes

spatial and internal symmetries [17]. So we decompose the two component spinor ξ as

(ξia)J = (gJδib + ~gJ~σib)(iτ
2)ba (4.3)

where i, j = 1, 2 and a, b = 1, 2 are SU(2) and spin indices respectively. With this decom-

position (4.3), (4.2) becomes a pair coupled differential equations:

∂rhI + ΛIJ
φ(r)

2
hJ + ΩIJhrJ = 0 (4.4a)

∂r(r
2hrI) + ΛIJ

φ(r)

2
(r2hrJ)−ΩIJ(r2hJ) = 0 (4.4b)

where

g(r) = e+iπ/4h(r), ~g = r̂gr(r) = e−iπ/4hr(r)r̂ (4.5)

and define

Ω ≡ im (4.6)

so that Ω is real for pure imaginary m. We made an ansatz ~g = r̂gr(r) because of the

rotation symmetry of the background field. Note that (4.4) are the differential equations

with real coefficients so that we can solve for the “Majorana” zero modes.

In order to find a normal mode, we have to transform the coupled first order differential

equations (4.4) into a set of decoupled second order differential equations 4. First, we define:

4 The derivation given here is closely related to [23] except there it imposes different condition on m and

thus yields different pattern from ours for zero modes of two-flavor case.

16



WI ≡ (e
∫ r dsΛφ(s)/2)IJ(hJ(r)), (4.7a)

WrI ≡ (e
∫ r dsΛφ(s)/2)IJ(r2hrJ(r)). (4.7b)

Hereafter we ignore the flavor indices. Then we can rewrite (4.4b) as

∂rWr(r) = e
∫ r dsΛφ(s)/2Ω(r2h). (4.8a)

Integrating (4.8a) gives

r2hr(r) = e−
∫ r dsΛφ(s)/2

∫ r

dr̃e
∫ r̃ dsΛφ(s)/2Ω(r̃2h(r̃)). (4.8b)

In use of (4.7a) and (4.8b), we can rewrite (4.4a):

r2e−
∫ r dsΛφ(s)/2∂rW (r)= −Ω (r2hr)

= −Ω e−
∫ r dsΛφ(s)/2

∫ r

dr̃e
∫ r̃ dsΛφ(s)/2Ω(r̃2h(r̃))

= −e+
∫ r dsΛφ(s)/2Ω2

∫ r

dr̃e−
∫ r̃ dsΛφ(s)/2(r̃2h(r̃)) (4.9a)

where in the third equality we have used the fact ΩΛ + ΛΩ = 0 twice. Since we choose to

work in the basis where both Λ and Ω2 are diagonal, differentiating (4.9a) arrives a set of

decoupled second-order differential equations:

∂r

(
r2e−

∫ r dsΛiiφ(s)∂rW (r)
)

= −Ω2
iir

2e−
∫ r dsΛiiφ(s)W (r) (4.9b)

where the Λii and Ωii are diagonal elements of Λ and Ω. In the following discussion, we

will ignore the subscript i and use the unbold letters Λ and m to denote one of the diagonal

elements for simplicity.

The first thing we notice is that the solution of (4.9b) when the diagonal matrix element

Ω2 = 0 is

h(r) = e−
∫ r dsΛφ(s)/2

(
c2 +

∫ r

dr̃e+
∫ r̃ dsΛφ(s) c1

r̃2

)
. (4.10)

Since we require the mode function is regular at the origin and the profile of φ(r) is φ(r =

0) = 0 and φ(r → ∞) = v (we set v = 1 throughout the paper for simplicity) 5, the

regularity near the origin implies c1 = 0. Therefore, we can see that the solution h(r) is

normalizable for Λ > 0 as Ω2 = 0.

5 A typical choice of φ(r) is φ(r) = v tanh(k0r) where k0 is a constant.
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For diagonal elements Ω2 6= 0 (Ω2
ii ≡ −m2

ii < 0 since Ω is a real anti-symmetric matrix),

the solution for (4.9b) is

W (r → 0) ∼ c

r

(
e−mr − e+mr

)
(4.11)

because we require W (r = 0) is regular and φ(r = 0) = 0. For general r, the W (r) satisfies

the differential equation

r2W ′′ + (2r − r2Λφ(r))W ′ −m2r2W = 0. (4.12)

To derive the proper boundary condition for numerical calculation near r = 0, we first

expand (4.11) near r ∼ 0, i.e.,

W (r << 1) ∼ −2mc

(
1 +

m2r2

3!
+
m4r4

5!

)
, (4.13a)

W ′(r << 1) ∼ −2

3
m3cr

(
1 +

m2r2

10
+
m4r4

280

)
. (4.13b)

Then we use the polynomial expansion to solve (4.12) near r = 0 and the solution should

reproduce the result (4.13) when we turn off φ(r). Here we use the profile of φ(r) = tanh(k0r)

where k0 is a constant, and the results are

W (r) ∼ a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5 + · · · , (4.14a)

W ′(r) ∼ a1 + 2a2r + 3a3r
2 + 4a4r

3 + 5a5r
4 + · · · , (4.14b)

φ(r) ∼ k0r −
(k0r)

3

3
+ · · · . (4.14c)

Substitute (4.14) into (4.12) and compare the coefficients, we arrive

r−1 term: a1 = 0, (4.15a)

Constant term: a2 =
a0m

2

6
, (4.15b)

r term: a3 =
Λk0 +m2

12
a1 = 0, (4.15c)

r2 term: a4 =
2Λk0 +m2

20
a2 =

m2(2Λk0 +m2)

120
a0, (4.15d)

r3 term: a5 =
3Λk0 +m2

26
a3 = 0. (4.15e)

So we take a0 = 1 and set c = −1
2m

to match (4.13). Then the boundary conditions are

W (r → 0) ∼
(

1 +
m2r2

6
+
m2(2Λk0 +m2)

120
r4

)
, (4.16a)

W ′(r → 0) ∼ m2r

3

(
1 +

2Λk0 +m2

10
r2

)
. (4.16b)

Using the boundary condition (4.16), we can then adopt the numerical shooting method to

find the normalizable zero mode solutions of the second-order differential equation (4.12).
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B. Two-flavored case

In two-flavor case, we can now parametrize our mass matrices to satisfy (4.1) as

Λ = λ1σ
1 + λ2σ

3, (4.17a)

m = µσ2 (4.17b)

where λ1, λ2 and µ are real numbers with the supplement condition λ2
1 + λ2

2 + µ2 = 1. We

make a rotation to the basis where Λ is diagonal, i.e.,

O =

 λ1√
λ21+(λ̃−λ2)2

λ̃−λ2√
λ21+(λ̃−λ2)2

λ1√
λ21+(λ̃−λ2)2

−λ2−λ̃√
λ21+(λ̃−λ2)2

 , (4.18a)

Λ′ = OΛOT =

 λ̃ 0

0 −λ̃

 , (4.18b)

m′ = OmOT = m det(O) =
−λ1

|λ1|
m (4.18c)

where λ̃ ≡
√
λ2

1 + λ2
2 > 0. In Fig. 1 we show the numerical result for the case µ 6= 0, which

gives us no normalizable zero energy solution. If µ is tuned to be zero while keeping Λ the

same, a single zero mode solution is popped out because of (4.10). The phase diagram is

shown in Fig. 2.

Here we should note a difference between the consideration in [23] and ours. We start

with the hermitian mass matrices which are implied by the hermiticity of the Hamiltonian.

On the other hand, in [23] they start from a generic two-Weyl-doublet model in which the

hermiticity of their Hamiltonian is guaranteed by adding the hermitian conjugate rather

than requiring the mass matrices to be hermitian. One may expect their mass matrices

are more general than the ones considered here. It is, however, not true because they also

require m to be hermitian after performing a Takagi transformation which makes Λ contain

only real and positive diagonal entries. This actually imposes a constraint on the mass

matrices and makes their model fall into different class from ours, so that there is no single

normalizable zero mode found in their model.
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FIG. 1. The profile of zero mode solutions of (4.4) for the mass matrices (4.18). The parameter

choices are λ̃ = 0.6, µ = 0.4 and k0 = 1. Left: h1(r). Right: h2(r)

FIG. 2. Phase diagram for (4.4) with mass matrix (4.18) of 2-flavored Majorana fermions. We

assume λ̃ > 0. The normalizability of the zero modes only depends on the Dirac mass µ. The

single normalizable zero mode appears only at the origin of this one dimensional phase space.

C. Four-flavored case

Now we would like to consider the case with four flavors of fermions, and we find that

there exists a single normalizable zero mode in this case even for a Dirac mass matrix with

some nonzero elements. We parametrize our mass matrices, which satisfy the requirement
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(4.1c), by an outer product of two Pauli matrices:

Λ =λ1(σ0 ⊗ σ1) + λ2(σ0 ⊗ σ3) + λ3(σ0 ⊗ σ0) + λ4(σ2 ⊗ σ2)

+λ5(σ1 ⊗ σ0) + λ6(σ1 ⊗ σ3) + λ7(σ1 ⊗ σ1) + λ8(σ3 ⊗ σ0)

+λ9(σ3 ⊗ σ1) + λ10(σ3 ⊗ σ3), (4.19a)

m =m1(σ0 ⊗ σ2) +m2(σ1 ⊗ σ2) +m3(σ3 ⊗ σ2)

+m4(σ2 ⊗ σ0) +m5(σ2 ⊗ σ1) +m6(σ2 ⊗ σ3). (4.19b)

In addition, to meet the condition (4.1a) and choose a basis in which Λ is diagonal, (4.19)

can then be further reduced to

Λ =λ2(σ0 ⊗ σ3) + λ3(σ0 ⊗ σ0) + λ8(σ3 ⊗ σ0) + λ10(σ3 ⊗ σ3), (4.20a)

m =m1(σ0 ⊗ σ2) +m2(σ1 ⊗ σ2) +m3(σ3 ⊗ σ2)

+m4(σ2 ⊗ σ0) +m5(σ2 ⊗ σ1) +m6(σ2 ⊗ σ3). (4.20b)

Note that the mass parameter space has been trimmed down largely.

Next we consider one special case of mass matrices (A11b) which is one among three

cases in (A11), and leave the detailed discussions about how to derive these proper mass

matrices in Appendix A. The reason to choose this particular case for illustration is that the

normalizability of the zero modes can be seen from a set of decoupled first-order differential

equations rather than a set of second-order ones. For the other two cases in (A11), we have

to solve the second order differential equations for the zero modes numerically. The special

choices of mass matrices are

Λ =λ2(σ0 ⊗ σ3) + λ8(σ3 ⊗ σ0), (4.21a)

m =m2(σ1 ⊗ σ2) +m5(σ2 ⊗ σ1). (4.21b)

In this basis, Λ and m aren diagonal and totally off-diagonal, respectively. After tedious

manipulations, we are able to write down (4.4a) explicitly, i.e.,

∂rh1 + (λ2 + λ8)
φ(r)

2
h1 + (m2 +m5)hr4 = 0, (4.22a)

∂rh4 − (λ2 + λ8)
φ(r)

2
h4 − (m2 +m5)hr1 = 0, (4.22b)

∂rh2 − (λ2 − λ8)
φ(r)

2
h2 − (m2 −m5)hr3 = 0, (4.22c)

∂rh3 + (λ2 − λ8)
φ(r)

2
h3 + (m2 −m5)hr2 = 0. (4.22d)
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FIG. 3. Phase diagram for (4.22) of 4-flavored Majorana fermions. We assume λ2 > λ8 > 0.

The two normalizable zero mode solutions appear at the origin. Along two straight lines m2 =

±m5, there exists only single normalizable solution. Other than these regions, there exists no

normalizable solution.

We can see that (4.22a), (4.22b) and (4.22c), (4.22d) are paired to form two copies of

the two-flavor equations. For arbitrary nonzero values of |λ2| 6= |λ8| and |m2| 6= |m8|, there

are no normalizable zero mode solutions in (4.22). However, there is a single zero mode

solution when |m2| = |m5| (|λ2| 6= |λ8|). For m2 = m5, the pair h1 and h4 do not have

normalizable solutions while h3 is normalizable and h2 is non-normalizable if λ2 − λ8 > 0

and vice versa. In the case of m2 = −m5, the pair h2 and h3 do not have normalizable

solutions while h1 is normalizable and h4 is non-normalizable if λ2 + λ8 > 0 and vice versa.

Moreover, two normalizable solutions are present when m2 = m5 = 0. That is, we have

found 0, 1, 2 normalizable zero modes depending the mass parameters. We show the phase

diagram in Fig. 3.

The phase diagram shows that this single Majorana zero mode exists only in a small range

of mass parameter space - a co-dimensional one plane; in other words, a single Majorana

zero-mode emerges only when some diagonal elements (but not all) of the square of Dirac

mass m2 equal to zero. The two normalizable solutions only appears at the origin of two-
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dimensional (m2,m5) plane, which is similar to two-flavor case: a single zero mode solution

appears only at the origin of one-dimensional space µ. This phase diagram can be viewed

as a stack of two one-dimensional phase diagrams, each of which corresponds to the straight

line m2 = ±m5 respectively. This simply reflects the feature of (4.22), which is seen to be

two copies of two-flavor equations.

Moreover, the pattern of normalizable zero modes found above is in accordance with the

result of K-theory analysis, namely, classified by π2(R0
4) = Z. In contrast, in the 2-flavored

case it is hard to tell if the pattern of the normalizable zero modes is classified by Z or Z2.

This just reflects the fact that the K-theory classification needs large number of spectators

to ensure stable results.

V. CONCLUSIONS

Conventionally Majorana zero-modes are realized by splitting a complex Dirac fermion

into two real degrees of freedom, i.e., the Majorana zero modes are not fundamental and

always come in pairs. An attempt to find a single real mode was made by McGreevy and

Swingle in [23], in which they try to realize a single normalizable zero mode emerging from

two SU(2) doublet Weyl fermions to avoid Witten anomaly. They found that it is impossible

to realize a single Majorana zero mode in an Witten anomaly-free theory.

Despite their promising attempt, we turn to the K-theory analysis for help. By adopting

flat-band condition and accommodating the discrete symmetries, which are essential ele-

ments in K-thoery analysis, we constraint the mass matrix structure in (2.2). Furthermore,

we introduce the Majorana fermions by imposing the reality condition on complex Dirac

fields, which is commonly used in high energy physics. It turns out that the K-theory anal-

ysis tells us that there could be any integer number of normalizable zero modes hosted by

the hedgehog (Table I) and indeed we can see the existence of a single zero mode when the

fermion doublet is only two. We then take a step further to consider four-fermion case and

find there can be zero, one or two normalizable zero mode in some particular choices of mass

matrices.

In summary, a single Majorana zero mode can be realized in Jackiw-Rebbi model with

some constraints given by the discrete symmetries. We believe there exists an index theorem

to support this result since it is a result guided by K-theory. It will be an interesting future
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project to find the index theorem behind.
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Appendix A: Four-Flavored Mass Matrices

With four flavors, we only need to extend our mass matrix to 4x4 matrices, we can also

parametrize them by an outter product of two Pauli matrices:

Λ =λ1(σ0 ⊗ σ1) + λ2(σ0 ⊗ σ3) + λ3(σ0 ⊗ σ0) + λ4(σ2 ⊗ σ2)

+λ5(σ1 ⊗ σ0) + λ6(σ1 ⊗ σ3) + λ7(σ1 ⊗ σ1) + λ8(σ3 ⊗ σ0)

+λ9(σ3 ⊗ σ1) + λ10(σ3 ⊗ σ3), (A1a)

m =m1(σ0 ⊗ σ2) +m2(σ1 ⊗ σ2) +m3(σ3 ⊗ σ2)

+m4(σ2 ⊗ σ0) +m5(σ2 ⊗ σ1) +m6(σ2 ⊗ σ3). (A1b)

Applying constraint (4.1a) leads to six equations:

(σ2 ⊗ σ1): λ1m4 + λ3m5 − λ6m2 + λ10m2 = 0, (A2a)

(σ1 ⊗ σ2): λ3m2 + λ5m1 − λ9m6 + λ10m5 = 0, (A2b)

(σ2 ⊗ σ3): λ2m4 + λ3m6 + λ7m3 − λ9m2 = 0, (A2c)

(σ0 ⊗ σ2): λ3m1 + λ4m4 + λ5m2 + λ8m3 = 0, (A2d)

(σ2 ⊗ σ0): λ1m5 + λ2m6 + λ3m4 + λ4m1 = 0, (A2e)

(σ3 ⊗ σ2): λ3m3 + λ7m2 + λ8m1 − λ6m5 = 0. (A2f)
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Here we choose λ1 = λ4 = λ5 = λ6 = λ7 = λ9 = 0 to make Λ diagonal and the set of

equations (A2) becomes

λ3m5 + λ10m2 = 0, (A3a)

λ3m2 + λ10m5 = 0, (A3b)

λ2m4 + λ3m6 = 0, (A3c)

λ3m1 + λ8m3 = 0, (A3d)

λ2m6 + λ3m4 = 0, (A3e)

λ3m3 + λ8m1 = 0. (A3f)

The mass matrices now reduce to

Λ =λ2(σ0 ⊗ σ3) + λ3(σ0 ⊗ σ0) + λ8(σ3 ⊗ σ0) + λ10(σ3 ⊗ σ3), (A4a)

m =m1(σ0 ⊗ σ2) +m2(σ1 ⊗ σ2) +m3(σ3 ⊗ σ2)

+m4(σ2 ⊗ σ0) +m5(σ2 ⊗ σ1) +m6(σ2 ⊗ σ3). (A4b)

Now the Λ is diagonal. We first notice the diagonal part of m2 are

m2
11 = (m1 +m3)2 + (m2 +m5)2 + (m4 +m6)2, (A5a)

m2
22 = (m1 +m3)2 + (m2 −m5)2 + (m4 −m6)2, (A5b)

m2
33 = (m1 −m3)2 + (m2 −m5)2 + (m4 +m6)2, (A5c)

m2
44 = (m1 −m3)2 + (m2 +m5)2 + (m4 −m6)2. (A5d)

The requirement of off-diagonal terms in (4.1b) to vanish gives us the constraints on the

choice of m’s:

m1m2 = 0, (A6a)

m1m4 = 0, (A6b)

m5m4 = 0, (A6c)

m5m3 = 0, (A6d)

m6m2 = 0, (A6e)

m6m3 = 0. (A6f)

First we notice that we have to choose at least three of the mi’s to be zero to fulfill (A6):

m1 = m5 = m6 = 0, or (A7a)

m2 = m3 = m4 = 0. (A7b)
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However, these two choices lead us to nowhere since all λ’s have to be zero in order to satisfy

the condition (A3).

Next we consider the case when four of the mi’s are equal to zero. To satisfy (A6), only

nine combinations are allowed:

m1 = m2 = m3 = m4 = 0, (A8a)

m1 = m2 = m3 = m5 = 0, (A8b)

m1 = m2 = m5 = m6 = 0, (A8c)

m1 = m3 = m4 = m6 = 0, (A8d)

m1 = m3 = m5 = m6 = 0, (A8e)

m1 = m4 = m5 = m6 = 0, (A8f)

m2 = m3 = m4 = m5 = 0, (A8g)

m2 = m3 = m4 = m6 = 0, (A8h)

m2 = m4 = m5 = m6 = 0. (A8i)

Now let us stop the choosing process here for a while and back to (A5). A lesson from the

two-flavor case is that the mode functions are both non-normalizable if m2
ii 6= 0. Hence

finding a single normalizable zero mode relies on m2
ii = 0 and the signs of the eigenvalues

of Λ. From (A5), we see that the mass parameters come in pairs: (m1,m3), (m2,m5) and

(m4,m6) and they contribute to diagonal terms as (mi+mj)
2 to two of them and (mi−mj)

2

to the other two. Therefore, we conclude that we can only have single normalizable zero

mode when the m’s vanish in pairs (with proper choice of Λ). This reduces the possible

choices of m’s (A8) to three:

m1 = m2 = m3 = m5 = 0, (A9a)

m1 = m3 = m4 = m6 = 0, (A9b)

m2 = m4 = m5 = m6 = 0. (A9c)

Combing (A3) with (A9), we find the possible parameter choices for having only a single

normalizable zero mode as follows:

m1 = m2 = m3 = m5 = 0, λ2 = λ3 = 0, (A10a)

m1 = m3 = m4 = m6 = 0, λ3 = λ10 = 0, (A10b)

m2 = m4 = m5 = m6 = 0, λ3 = λ8 = 0. (A10c)
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Besides these three choices, we only have zero or two normalizable zero mode solutions. The

corresponding Λ and m matrices for (A9) are:

Λ=


λ10 + λ8 0 0 0

0 λ8 − λ10 0 0

0 0 −(λ8 + λ10) 0

0 0 0 −(λ8 − λ10)

 ,

m= i


0 0 −(m4 +m6) 0

0 0 0 −(m4 −m6)

m4 +m6 0 0 0

0 m4 −m6 0 0

 , (A11a)

Λ=


λ2 + λ8 0 0 0

0 −(λ2 − λ8) 0 0

0 0 λ2 − λ8 0

0 0 0 −(λ2 + λ8)

 ,

m= i


0 0 0 −(m2 +m5)

0 0 m2 −m5 0

0 −(m2 −m5) 0 0

m2 +m5 0 0 0

 , (A11b)

Λ=


λ2 + λ10 0 0 0

0 λ2 + λ10 0 0

0 0 λ2 − λ10 0

0 0 0 −(λ2 − λ10)

 ,

m= i


0 −(m1 +m3) 0 0

m1 +m3 0 0 0

0 0 0 −(m1 −m3)

0 0 m1 −m3 0

 . (A11c)

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, S. Das Sarma, “Non-Abelian Anyons and

Topological Quantum Computation,” Rev. Mod. Phys. 80, 1083 (2008).

27



[2] J. C.Y. Teo, C.L. Kane, “Majorana Fermions and Non-Abelian Statistics in Three Dimen-

sions,” Phys. Rev. Lett. 104, 046401 (2010).

[3] M. Freedman, M. B. Hastings, C. Nayak, X.-L. Qi, K. Walker, Z.h. Wang, “Projective Rib-

bon Permutation Statistics: a Remnant of non-Abelian Braiding in Higher Dimensions,”

arXiv:1005.0583[cond-mat].

[4] A. Altland, M. R. Zirnbauer, “Novel Symmetry Classes in Mesoscopic Normal-

Superconducting Hybrid Structures,” Phys. Rev. B 55, 1142 (1997).

[5] A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, “Classification of Topological Insu-

lators and Superconductors,” AIP Conf. Proc. 1134, 10 (2009).

[6] A. Kitaev, “Periodic table for topological insulators and superconductors,” To appear in the

Proceedings of the L.D.Landau Memorial Conference ”Advances in Theoretical Physics”, June

22-26, 2008, Chernogolovka, Moscow region, Russia. arXiv:0901.2686[cond-mat].

[7] X.-G. Wen, “Symmetry protected topological phases in non-interacting fermion systems,”

Phys. Rev. B 85, 085103 (2012). arXiv:1111.6341[cond-mat].

[8] J. C.Y. Teo, C.L. Kane, “Topological Defects and Gapless Modes in Insulators and Supercon-

ductors,” Phys. Rev. B 82, 115120 (2010).

[9] Y. Ran, “Weak indices and dislocations in general topological band structures,”

arXiv:1006.5454[cond-mat].

[10] J. Moore, and L. Balents, Phys. Rev. B 75, 121306 (2007).

[11] R. Roy, Three dimensional topological invariants for time reversal invariant Hamiltonians and

the three dimensional quantum spin Hall effect, (2006), cond-mat/0607531. Phys. Rev. B 79,

195322 (2009).

[12] L. Fu, C. Kane, and E. Mele, Topological Insulators in Three Dimensions, , Phys. Rev. Lett.

98, 106803 (2007).

[13] L. Fu, and C. Kane, Topological insulators with inversion symmetry, , Phys. Rev. B 76, 45302

(2007),

[14] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. Hor, R. Cava, and M. Hasan, A topological Dirac

insulator in a quantum spin Hall phase, , Nature 452, 970 (2008).

[15] M. Z. Hasan, C. L. Kane, “Topological Insulators,” Rev. Mod. Phys. 82, 3045 (2010).

[16] M. Nakahara, Geometry, Topology and Physics, Adam Hilger (1990).

[17] R. Jackiw and C. Rebbi, “Solitons with Fermion Number 1/2,” Phys. Rev. D 13, 3398 (1976).

28

http://arxiv.org/abs/1005.0583
http://arxiv.org/abs/0901.2686
http://arxiv.org/abs/1111.6341
http://arxiv.org/abs/1006.5454
http://arxiv.org/abs/cond-mat/0607531


[18] R. Jackiw, P. Rossi, “Zero Modes of the Vortex - Fermion System,” Nucl. Phys. B190, 681

(1981).
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