40 research outputs found

    Pedagogical Agents for Fostering Question-Asking Skills in Children

    Get PDF
    Question asking is an important tool for constructing academic knowledge, and a self-reinforcing driver of curiosity. However, research has found that question asking is infrequent in the classroom and children's questions are often superficial, lacking deep reasoning. In this work, we developed a pedagogical agent that encourages children to ask divergent-thinking questions, a more complex form of questions that is associated with curiosity. We conducted a study with 95 fifth grade students, who interacted with an agent that encourages either convergent-thinking or divergent-thinking questions. Results showed that both interventions increased the number of divergent-thinking questions and the fluency of question asking, while they did not significantly alter children's perception of curiosity despite their high intrinsic motivation scores. In addition, children's curiosity trait has a mediating effect on question asking under the divergent-thinking agent, suggesting that question-asking interventions must be personalized to each student based on their tendency to be curious.Comment: Accepted at CHI 202

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Electronic health record access by patients as an indicator of information seeking and sharing for cardiovascular health promotion in social networks: Secondary analysis of a randomized clinical trial

    No full text
    We investigated electronic health record (EHR) access as an indicator of cardiovascular health promotion by patients in their social networks, by identifying individuals who viewed their coronary heart disease (CHD) risk information in the EHR and shared this information in their social networks among various spheres of influence. In a secondary analysis of the Myocardial Infarction Genes trial, Olmsted County MN residents (2013–2015; n = 203; whites, ages 45–65 years) at intermediate CHD risk were randomized to receive their conventional risk score (CRS; based on traditional risk factors) alone or also their genetic risk score (GRS; based on 28 genomic variants). We assessed self-reported and objectively quantified EHR access via a patient portal at three and six months after risk disclosure, and determined whether this differed by GRS disclosure. Data were analyzed using logistic regression and adjusted for sociodemographic characteristics, family history, and baseline CRS/GRS. Self-reported EHR access to view CHD risk information was associated with a high frequency of objectively quantified EHR access (71(10) versus 37(5) logins; P = 0.0025) and a high likelihood of encouraging others to be screened for their CHD risk (OR 2.936, CI 1.443–5.973, P = 0.0030), compared to the absence of self-reported EHR access to view CHD risk information. We thereby used EHR access trends to identify individuals who may function as disseminators of CHD risk information in social networks, compared to individuals on the periphery of their social networks who did not exhibit this behavior. Partnering with such individuals could amplify CHD health promotion.Clinical Trial Registration: Myocardial Infarction Genes (MI-GENES) Study, NCT01936675, https://clinicaltrials.gov/ct2/show/NCT01936675. Keywords: Genetics, Risk factors, Risk assessment, Behavior modification, Electronic health records, Personal health records, Patient portals, Patient engagement, Social networ

    Cancer therapy–related hypertension: a scientific statement from the American Heart Association

    No full text
    Contemporary anticancer drugs have significantly improved cancer survival at the expense of cardiovascular toxicities, including heart disease, thromboembolic disease, and hypertension. One of the most common side effects of these drugs is hypertension, especially in patients treated with vascular endothelial growth factor inhibitors, as well as tyrosine kinase inhibitors and proteasome inhibitors. Adjunctive therapy, including corticosteroids, calcineurin inhibitors, and nonsteroidal anti-inflammatories, as well as anti-androgen hormone therapy for prostate cancer, may further increase blood pressure in these patients. Cancer therapy–induced hypertension is often dose limiting, increases cardiovascular mortality in cancer survivors, and is usually reversible after interruption or discontinuation of treatment. The exact molecular mechanisms underlying hypertension are unclear, but recent discoveries indicate an important role for reduced nitric oxide generation, oxidative stress, endothelin-1, prostaglandins, endothelial dysfunction, increased sympathetic outflow, and microvascular rarefaction. In addition, genetic polymorphisms in vascular endothelial growth factor receptors are implicated in vascular endothelial growth factor inhibitor–induced hypertension. Diagnosis, management, and follow-up of cancer therapy–induced hypertension follow national hypertension guidelines because evidence-based clinical trials specifically addressing patients who develop hypertension as a result of cancer therapy are currently lacking. Rigorous baseline assessment of patients before therapy is started requires particular emphasis on assessing and treating cardiovascular risk factors. Hypertension management follows guidelines for the general population, although special attention should be given to rebound hypotension after termination of cancer therapy. Management of these complex patients requires collaborative care involving oncologists, cardiologists, hypertension specialists, primary care professionals, and pharmacists to ensure the optimal therapeutic effect from cancer treatment while minimizing competing cardiovascular toxicities

    Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): A feasibility trial design

    No full text
    Background: The many improvements in cancer therapies have led to an increased number of survivors, which comes with a greater risk of consequent/subsequent cardiovascular disease. Identifying effective management strategies that can mitigate this risk of cardiovascular complications is vital. Therefore, developing computer-driven and personalized clinical decision aid interventions that can provide early detection of patients at risk, stratify that risk, and recommend specific cardio-oncology management guidelines and expert consensus recommendations is critically important. Objectives: To assess the feasibility, acceptability, and utility of the use of an artificial intelligence (AI)-powered clinical decision aid tool in shared decision making between the cancer survivor patient and the cardiologist regarding prevention of cardiovascular disease. Design: This is a single-center, double-arm, open-label, randomized interventional feasibility study. Our cardio-oncology cohort of \u3e 4000 individuals from our Clinical Research Data Warehouse will be queried to identify at least 200 adult cancer survivors who meet the eligibility criteria. Study participants will be randomized into either the Clinical Decision Aid Group (where patients will use the clinical decision aid in addition to current practice) or the Control Group (current practice). The primary endpoint of this study is to assess for each patient encounter whether cardiovascular medications and imaging pursued were consistent with current medical society recommendations. Additionally, the perceptions of using the clinical decision tool will be evaluated based on patient and physician feedback through surveys and focus groups. This trial will determine whether a clinical decision aid tool improves cancer survivors\u27 medication use and imaging surveillance recommendations aligned with current medical guidelines. Trial registration: ClinicalTrials.Gov Identifier: NCT05377320

    Joint SOGC-CCMG Opinion for Reproductive Genetic Carrier Screening: An Update for All Canadian Providers of Maternity and Reproductive Healthcare in the Era of Direct-to-Consumer Testing

    No full text
    This guideline was written to update Canadian maternity care and reproductive healthcare providers on pre- and postconceptional reproductive carrier screening for women or couples who may be at risk of being carriers for autosomal recessive (AR), autosomal dominant (AD), or X-linked (XL) conditions, with risk of transmission to the fetus. Four previous SOGC- Canadian College of Medical Geneticists (CCMG) guidelines are updated and merged into the current document. All maternity care (most responsible health provider [MRHP]) and paediatric providers; maternity nursing; nurse practitioner; provincial maternity care administrator; medical student; and postgraduate resident year 1-7. Fertile, sexually active females and their fertile, sexually active male partners who are either planning a pregnancy or are pregnant (preferably in the first trimester of pregnancy, but any gestational age is acceptable). Women and their partners will be able to obtain appropriate genetic carrier screening information and possible diagnosis of AR, AD, or XL disorders (preferably pre-conception), thereby allowing an informed choice regarding genetic carrier screening and reproductive options (e.g., prenatal diagnosis, preimplantation genetic diagnosis, egg or sperm donation, or adoption). Informed reproductive decisions related to genetic carrier screening and reproductive outcomes based on family history, ethnic background, past obstetrical history, known carrier status, or genetic diagnosis. SOGC REPRODUCTIVE CARRIER SCREENING SUMMARY STATEMENT (2016): Pre-conception or prenatal education and counselling for reproductive carrier screening requires a discussion about testing within the three perinatal genetic carrier screening/diagnosis time periods, which include pre-conception, prenatal, and neonatal for conditions currently being screened for and diagnosed. This new information should be added to the standard reproductive carrier screening protocols that are already being utilized by the most responsible maternity provider through the informed consent process with the patient. (III-A; GRADE low/moderate) SOGC OVERVIEW OF RECOMMENDATIONS QUALITY AND GRADE: There was a strong observational/expert opinion (quality and grade) for the genetic carrier literature with randomized controlled trial evidence being available only for the invasive testing. Both the Canadian Task Force on Preventive Health Care quality and classification and the GRADE evidence quality and grade are provided. MEDLINE; PubMed; government neonatal screening websites; key words/common reproductive genetic carrier screened diseases/previous SOGC Guidelines/medical academic societies (Society of Maternal-Fetal Medicine [SMFM]; American College of Medical Genetics and Genomics; American College of Obstetricians and Gynecologists [ACOG]; CCMG; Royal College Obstetrics and Gynaecology [RCOG] [UK]; American Society of Human Genetics [ASHG]; International Society of Prenatal Diagnosis [ISPD])/provincial neonatal screening policies and programs; search terms (carrier screening, prenatal screening, neonatal genetic/metabolic screening, cystic fibrosis (CF), thalassemia, hemoglobinopathy, hemophilia, Fragile X syndrome (FXS), spinal muscular atrophy, Ashkenazi Jewish carrier screening, genetic carrier screening protocols, AR, AD, XL). 10 years (June 2005-September 2015); initial search dates June 30, 2015 and September 15, 2015; completed final search January 4, 2016. Validation of articles was completed by primary authors RD Wilson and I De Bie. Benefits are to provide an evidenced based reproductive genetic carrier screening update consensus based on international opinions and publications for the use of Canadian women, who are planning a pregnancy or who are pregnant and have been identified to be at risk (personal or male partner family or reproductive history) for the transmission of a clinically significant genetic condition to their offspring with associated morbidity and/or mortality. Harm may arise from having counselling and informed testing of the carrier status of the mother, their partner, or their fetus, as well as from declining to have this counselling and informed testing or from not having the opportunity for counselling and informed testing. Costs will ensue both from the provision of opportunities for counselling and testing, as well as when no such opportunities are offered or are declined and the birth of a child with a significant inherited condition and resulting morbidity/mortality occurs; these comprise not only the health care costs to the system but also the social/financial/psychological/emotional costs to the family. These recommendations are based on expert opinion and have not been subjected to a health economics assessment and local or provincial implementation will be required. This guideline is an update of four previous joint SOGC-CCMG Genetic Screening Guidelines dated 2002, 2006, 2008, and 2008 developed by the SOGC Genetic Committee in collaboration with the CCMG Prenatal Diagnosis Committee (now Clinical Practice Committee). 2016 CARRIER SCREENING RECOMMENDATION

    Team principles for successful interdisciplinary research teams

    No full text
    Interdisciplinary research teams can be extremely beneficial when addressing difficult clinical problems. The incorporation of conceptual and methodological strategies from a variety of research disciplines and health professions yields transformative results. In this setting, the long-term goal of team science is to improve patient care, with emphasis on population health outcomes. However, team principles necessary for effective research teams are rarely taught in health professional schools. To form successful interdisciplinary research teams in cardio-oncology and beyond, guiding principles and organizational recommendations are necessary. Cardiovascular disease results in annual direct costs of 220billion(about220 billion (about 680 per person in the US) and is the leading cause of death for cancer survivors, including adult survivors of childhood cancers. Optimizing cardio-oncology research in interdisciplinary research teams has the potential to aid in the investigation of strategies for saving hundreds of thousands of lives each year in the United States and mitigating the annual cost of cardiovascular disease. Despite published reports on experiences developing research teams across organizations, specialties and settings, there is no single journal article that compiles principles for cardiology or cardio-oncology research teams. In this review, recurring threads linked to working as a team, as well as optimal methods, advantages, and problems that arise when managing teams are described in the context of career development and research. The worth and hurdles of a team approach, based on practical lessons learned from establishing our multidisciplinary research team and information gleaned from relevant specialties in the development of a successful team are presented
    corecore