39 research outputs found

    A novel size independent symplectic analytical singular element for inclined crack terminating at bimaterial interface

    Get PDF
    Cracks often exist in composite structures, especially at the interface of two different materials. These cracks can significantly affect the load bearing capacity of the structure and lead to premature failure of the structure. In this paper, a novel element for modeling the singular stress state around the inclined interface crack which terminates at the interface is developed. This new singular element is derived based on the explicit form of the high order eigen solution which is, for the first time, determined by using a symplectic approach. The developed singular element is then applied in finite element analysis and the stress intensity factors (SIFs) for a number of crack configurations are derived. It has been concluded that composites with complex geometric configurations of inclined interface cracks can be accurately simulated by the developed method, according to comparison of the results against benchmarks. It has been found that the stiffness matrix of the proposed singular element is independent of the element size and the SIFs of the crack can be solved directly without any post-processing

    Identification of common genetic risk variants for autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD.Peer reviewe

    Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract

    Get PDF
    Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 1

    Genome-wide by Environment Interaction Studies of Depressive Symptoms and Psychosocial Stress in UK Biobank and Generation Scotland

    Get PDF
    Stress is associated with poorer physical and mental health. To improve our understanding of this link, we performed genome-wide association studies (GWAS) of depressive symptoms and genome-wide by environment interaction studies (GWEIS) of depressive symptoms and stressful life events (SLE) in two UK population-based cohorts (Generation Scotland and UK Biobank). No SNP was individually significant in either GWAS, but gene-based tests identified six genes associated with depressive symptoms in UK Biobank (DCC, ACSS3, DRD2, STAG1, FOXP2 and KYNU; p < 2.77 x 10(-6)). Two SNPs with genome-wide significant GxE effects were identified by GWEIS in Generation Scotland: rs12789145 (53-kb downstream PIWIL4; p = 4.95 x 10(-9); total SLE) and rs17070072 (intronic to ZCCHC2; p = 1.46 x 10(-8); dependent SLE). A third locus upstream CYLC2 (rs12000047 and rs12005200, p < 2.00 x 10(-8); dependent SLE) when the joint effect of the SNP main and GxE effects was considered. GWEIS gene-based tests identified: MTNR1B with GxE effect with dependent SLE in Generation Scotland; and PHF2 with the joint effect in UK Biobank (p < 2.77 x 10(-6)). Polygenic risk scores (PRSs) analyses incorporating GxE effects improved the prediction of depressive symptom scores, when using weights derived from either the UK Biobank GWAS of depressive symptoms (p = 0.01) or the PGC GWAS of major depressive disorder (p = 5.91 x 10(-3)). Using an independent sample, PRS derived using GWEIS GxE effects provided evidence of shared aetiologies between depressive symptoms and schizotypal personality, heart disease and COPD. Further such studies are required and may result in improved treatments for depression and other stress-related conditions

    Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns

    Get PDF
    Epigenetic processes, including DNA methylation (DNAm), are among the mechanisms allowing integration of genetic and environmental factors to shape cellular function. While many studies have investigated either environmental or genetic contributions to DNAm, few have assessed their integrated effects. Here we examine the relative contributions of prenatal environmental factors and genotype on DNA methylation in neonatal blood at variably methylated regions (VMRs) in 4 independent cohorts (overall n = 2365). We use Akaike’s information criterion to test which factors best explain variability of methylation in the cohort-specific VMRs: several prenatal environmental factors (E), genotypes in cis (G), or their additive (G + E) or interaction (GxE) effects. Genetic and environmental factors in combination best explain DNAm at the majority of VMRs. The CpGs best explained by either G, G + E or GxE are functionally distinct. The enrichment of genetic variants from GxE models in GWAS for complex disorders supports their importance for disease risk

    A symplectic analytical singular element for the inclined crack terminating at the material interface of composite structures

    No full text
    10.1088/1742-6596/842/1/012080Journal of Physics: Conference Series84211208

    Tb/Co MULTILAYER FILMS AND THE RELAXATION OF THEIR INTERFACE

    No full text
    In Tb/Co multilayers, the saturation magnetization Ms and the anisotropy constant Ku as a function of the modulation period are fitted by a mean-field model and a dipolar interaction model respectively. The Kerr rotation angles θk relax at room temperature, which could be attributed to the existence of shear stress due to lattice mismatch at the interface

    Efficient carbon dioxide electroreduction over rationally designed heterogeneous Ag2S-Au nanocomposites

    No full text
    Electrochemical carbon dioxide reduction reaction (CO2RR) is regarded as an effective strategy to store abundant renewable energy and build a carbon neutral society. Gold (Au) and silver (Ag)-based catalysts for the effective electrochemical transformation of CO2 to CO emerge as promising candidates. Heterogeneous nanocomposites composed of noble metals and semiconductors exhibit great potential for electrocatalytic CO2 reduction through the electronic coupling effect at coherent interfaces. Herein, we successfully synthesize heterogeneous Ag2S-Au composite nanoparticles (NPs) as effective catalysts for CO production through CO2RR. At −0.8 V vs RHE, the heterogeneous Ag2S-Au nanocatalysts display a considerable CO Faradaic efficiency of 94.5%, and an appreciable CO partial current density of 9.17 mA cm−2. Moreover, they exhibit good stability for 30 h without obvious decrease. On the basis of density functional theory (DFT) calculations, it can be made clear that the heterogeneous Ag2S-Au interface is energetically more beneficial to the generation of COOH* intermediate for CO2RR. This study provides a new application for noble metal–semiconductor nanocomposites. © 2022 Elsevier Inc
    corecore