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Common variants in SOX-2 and congenital cataract
genes contribute to age-related nuclear cataract
Ekaterina Yonova-Doing et al.#

Nuclear cataract is the most common type of age-related cataract and a leading cause of

blindness worldwide. Age-related nuclear cataract is heritable (h2= 0.48), but little is

known about specific genetic factors underlying this condition. Here we report findings

from the largest to date multi-ethnic meta-analysis of genome-wide association studies

(discovery cohort N= 14,151 and replication N= 5299) of the International Cataract

Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468,

P= 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this dis-

ease: SOX2-OT (rs9842371, P= 1.7 × 10−19), TMPRSS5 (rs4936279, P= 2.5 × 10−10),

LINC01412 (rs16823886, P= 1.3 × 10−9), GLTSCR1 (rs1005911, P= 9.8 × 10−9), and COMMD1

(rs62149908, P= 1.2 × 10−8). The results suggest a strong link of age-related nuclear cat-

aract with congenital cataract and eye development genes, and the importance of common

genetic variants in maintaining crystalline lens integrity in the aging eye.
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Age-related cataract is the leading cause of blindness,
accounting for more than one-third of blindness
worldwide1,2. Cataract is an opacification of the lens of

the eye, resulting in reduced vision, glare and decreased ability to
perform daily activities. Although surgery is often effective in
restoring vision, its costs to health-care systems are considerable3.
The prevalence of cataract and the number of cataract surgeries is
projected to rise globally, as the population ages4,5, and so will the
costs of cataract to society.

The most frequent form of age-related cataract, nuclear cat-
aract (15 year cumulative incidence of 49.6% in individuals aged
65–74 years) affects the lens nucleus6. Susceptibility to age-related
nuclear cataract (ARNC) was conferred by a mixture of genetic
and environmental risk factors: up to half on nuclear cataract
variation is due to genetic risk factors7, while smoking8, obesity9

and diet10 are potentially modifiable exposures associated
with ARNC.

Despite the public health significance of ARNC, relatively little
is known about its underlying genetic factors. To date, genome-
wide association studies (GWAS) have not been very successful in
the identifying common genetic variants for age-related cataract,
partly due to the difficulties in objectively phenotyping ARNC.
Studies using cataract surgery (either self-reported or based on
information from electronic health record) as a proxy for the
presence of cataract has been challenging, as the severity of cat-
aract when cataract surgery is done varies greatly among
individuals11,12. On top of this, there are three major subtypes of
age-related cataract (i.e., nuclear, cortical and subcapsular catar-
act); each of them may have different pathophysiology. To date,
the only reported GWAS of ARNC with objective phenotyping
via lens photos and detailed cataract grading was done in Asian
cohorts, where two genetic loci (CRYAA, KCNAB1) were found
associated with ARNC13. The CRYAA gene encodes for most
abundant structural protein present in the lens and mutations in
this gene cause congenital cataracts14,15. KCNAB1 encodes
voltage-gated potassium channel, previously linked to ageing
bone phenotypes16. However, a more recent exome array analysis
of ~1500 Europeans failed to find any variants associated at
genome-wide significance17. Previous analysis of poorly defined
(self-report) cataract phenotypes from the UK Biobank (http://
www.nealelab.is/uk-biobank, https://www.leelabsg.org/resources)
found no common variant associations. A GWAS of retinal
detachment in UK Biobank found 20 loci associated with cataract
surgery, likely reflecting several age-related cataract subtypes18.
We are not aware of any other GWAS studies of cataract sub-
types, other than for age-related diabetic cataract: a small Tai-
wanese study found several suggestive loci and a recent larger
European-ancestry GWAS identified CACNA1C gene at GWAS
significance19,20.

Given the potential of appropriately powered genetic studies to
reveal aetiologies and pathways of ARNC, we aimed to identify
additional genomic regions associated with the susceptibility to
ARNC via a meta-analysis of GWAS of 12 well-phenotyped
studies from the International Cataract Genetics Consortium.
We replicated genetic association of CRYAA (rs7278468, P=
2.8 × 10−16) with nuclear cataract and identified six new loci
associated with this disease. The results suggest a strong link of
ARNC with genes linked to congenital cataract and eye devel-
opment, as well as and the importance of common genetic var-
iants in maintaining crystalline lens integrity during ageing.

Results
The results from the meta-analysis of 8.5 million variants in eight
studies (Supplementary Fig. 1 and Supplementary Tables 1–3)
followed a polygenic model with no evidence of population

structure (meta-analysis genomic inflation factor λ= 1.009,
Supplementary Table 4 and Supplementary Fig. 2). In the dis-
covery stage we found three loci to be associated at genome-wide
significance (Fig. 1) and this number increased to six after the all-
data meta-analysis stage (Supplementary Figs. 3–6). As expected
for a common age-related trait, the majority of associated variants
or variants in LD with those were situated outside of coding
regions and we observed suggestive depletion of intronic variants
and enrichment in ncRNA and upstream variants (Supplemen-
tary Fig. 4).

We confirmed the CRYAA genomic region previously found
significantly associated with ARNC score at a GWAS-significant
level. The strongest evidence for association was found for
rs7278468 (β= 0.08; P= 3.6 × 10−17), just upstream of the
CRYAA gene transcript. However, KCNAB1 variants that were
previously reported in association with ARNC13 were rare in
Europeans (MAF= 0.03) and were not significantly associated in
this meta-analysis (β= 0.04; P= 0.02 for KCNAB1 rs55818638).
In addition, we identified two novel susceptibility regions that at
this stage were significantly associated with ARNC (Table 1 and
Supplementary Figs. 3 and 5). Markers located on chromosome
3q26.33, in proximity of the SOX2 gene and within its regulator,
SOX2-OT, were significantly associated with the ARNC score
(β= 0.07; Pdiscovery= 2.6 × 10−12 for rs9842371). The SOX2 locus
has not previously been associated with nuclear cataract but was
associated with cataract surgery in UK Biobank18.

A second novel susceptibility genetic locus significantly asso-
ciated with ARNC score was located on chromosome 11.q23.2
and overlapped with the genomic sequence of the TMPRSS5 gene
(β= 0.06; Pdiscovery= 4.2 × 10−11 for rs4936279). Furthermore, a
third locus, overlapping with the COMMD1 gene-coding region,
also approached genome-wide significance in this meta-analysis
(β=−0.06; Pdiscovery= 6.5 × 10−8 for rs62149908). Among the
genes that were associated at suggestive, but not GWAS-
significant levels overall, ancestry-specific significant associa-
tions were observed at chromosome 13q12.11 in Asians (β= 0.07;
PAsians= 2.7 × 10−8 for rs4769087) within the GJA3 genomic
sequence, and on chromosome 11q23.1 in Europeans upstream of
CRYAB (β= 0.07; PEuropeans= 2.5 × 10−5 for rs10789852).

Genome-wide associated SNPs showing suggestive association
(P < 10−6) in the discovery phase were taken forward to the
replication stage of this study (Table 1). Despite the smaller
sample size for replication, four out of nine markers tested
showed nominal replication (P < 0.05, Supplementary Fig. 7).

Fig. 1 Manhattan plot of the GWAS meta-analysis for age-related nuclear
cataract in the combined analysis (N= 14,151). The plot shows −log10-
transformed P values for all SNPs; the upper horizontal line represents the
genome-wide significance threshold of P < 5.0 × 10−8; the lower line
indicates a P value of 10−5. Data of both directly genotyped and imputed
SNPs are presented in the Manhattan plot.
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Another three of the SNPs failed to achieve significance, but the
association in the replication meta-analysis was in the same
direction as that in the discovery phase (Table 1). Notably asso-
ciation was replicated for markers in the SOX2 locus (OR= 1.31;
P= 4.4 × 10−9 for rs9842371), but the replication results were not
statistically significant for the markers in the TMPRSS5 locus, nor
in the previously established CRYAA locus (OR= 1.13; P= 5.6 ×
10−2 for rs7278468). Nevertheless, we observed that the direction
of allele’s effects was the same between the discovery stage and
replication stage all SNPs (i.e., the allele associated with higher
ARNC score in the discovery stage also had a odds ratio of >1 for
ARNC in the replication stage), except ITSN2 rs13021828.

An all-inclusive meta-analysis of all leading SNPs of regions
associated at or close to GWAS-significance levels using both
the discovery and replication loci was performed (Table 1 and
Supplementary Fig. 4). In addition to the loci of SOX2/SOX2-OT
(Z= 9.03; P= 1.7 × 10−19 for rs9842371), CRYAA, (Z= 8.18;
P= 2.8 × 10−16 for rs7278468) and TMPRSS5 (Z= 6.33; P=
2.5 × 10−10 for rs4936279), novel genome-wide significant asso-
ciations were found for rs16823886 upstream of the ZEB2
gene (Z=−6.07; P= 1.3 × 10−9), rs62149908 (Z=−5.70; P=
1.2 × 10−8), within the Copper Metabolism Domain Containing 1
(COMMD1) gene; for rs1005911 within the GLTSCR1 gene (Z=
−5.73; P= 9.8 × 10−9). At those loci, the following genes are
expressed in lens (Supplementary Table 6): ZEB2, GLTSCR1,
NAPA, but the eQTL and regulatory sequence analysis (Supple-
mentary Fig. 6, Supplementary Tables 5, Supplementary Data 1)
did not provide conclusive evidence on how those genes may
exert their effects on ARNC formation. The eQTL analysis
(Supplementary Data 1), however, found a strong association
between the following SNPs and transcript levels: rs7278468 and
the CRYAA (P= 1.3 × 10−7, liver tissue); rs11067211 and MMAB
(P= 5.3 × 10−8, brain); rs61185326 and RHOB (P= 3.0 × 10−7,
muscle); and rs10789852 and CRYAB (P= 7.6 × 10−22; fat). It is
possible that similar effects are present for other genes, but at
tissues and developmental stages that are not captured in the
available GTEx or TwinsUK tissues.

The common variants associated at GWAS-levels with ARNC
in our discovery stage analysis explained ~3% of heritability. A
conditional analysis of SNPs identified from discovery phase loci
(Supplementary Table 7) and a gene-based test (Supplementary
Table 8) was performed on the results of the discovery stage
meta-analysis, but they did not yield any additional association
beyond those already reported above. Pathway analysis were a few
pathways associated with ARNC (Supplementary Table 9), with
the strongest enrichment observed for cholesterol biosynthesis
(Ppermuted= 0.01), whose importance in cataract is not
clearly known.

An LDscore systematic analysis of genetic correlations sug-
gested that the ARNC genetic risk was correlated with the fol-
lowing eye-related traits measured in UK Biobank: cataract (0.48),
diabetes-related eye diseases (0.27) and glaucoma (0.20). In
addition, there was correlation with the genetic risks of (Sup-
plementary Fig. 8) hip (0.34) and waist (0.30) circumference,
different classes of circulating lipids (median= 0.26) and age at
menarche (−0.12). However, none of the correlations survived
correction for multiple testing. Similarly, the Open Targets SNP
and gene co-localisation results point to sharing of signals with
astigmatism-related traits (CRYAA, SOX2 and GLTSCR1 loci),
cardio-metabolic traits, anthropometric and blood cell traits
(Supplementary Fig. 9). Of note, there was also co-localisation
with smoking-related GWAS signals at the ZEB2 and ITSN2 loci
(Supplementary Fig. 9).

Multiple variants in proximity to 47 genes linked to congenital
cataract were nominally associated with ARNC in our analysis
(Fig. 2 and Supplementary Data 2), but only 5 survived correctionT
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for multiple testing (α= 5 × 10−4) in BFSP1 (β= 0.08; P= 3.5 ×
10−5), LIM2 (β= 0.04; P= 1.4 × 10−4), MIP (β= 0.02; P= 3.4 ×
10−4), TFAP2A (β= 0.05; P= 3.7 × 10−4) and CHMP4B (β=
0.08; P= 3.8 × 10−4).

Discussion
Here we report the results of a GWAS on nuclear cataract, con-
ducted on 14,151 participants with detailed ARNC severity phe-
notypes and replicated in 5299 samples. Apart from confirming
association at the CRYAA, we increased the number of known
associations by reporting five additional ARNC genetic loci.

The SOX2 Overlapping Transcript (SOX2-OT) encodes for a
highly conserved long noncoding RNA, which overlaps and
regulates SOX2 expression. SOX2 is a single exon transcription
factor, previously associated with anophthalmia21 and colo-
boma22. Sox2 is involved in crystallin regulation in murine23 and
avian models24 and in humans, and SOX2 mutations cause
microphthalmia and cataract25–27.

ZEB2 is a still uncharacterised member of the Zinc Finger E-
Box Binding Homeobox family. However a structurally similar
member of the same family, ZEB1 is associated to Fuch’s28 and
posterior29 corneal dystrophy, while COMMD1 is involved in
copper homoeostasis30 and metabolism and in Wilson’s disease31.
Mutations in the UBE3 gene are known causes of the Kaufman
oculocerebrofacial syndrome32, a severe malformation in the
newborn with numerous ocular manifestations.

We observe association for genetic variants near the GJA3
locus, as previously reported33,34; however, this association was
ethnicity-specific and could not be replicated in Europeans or in
the smaller cohort of nuclear cataract case–control replication
panel. This gene encoding for a gap-junction connexin (Con-
nexin-46, CXA46) can induce cataract in animal models35 and
some of its mutations cause congenital cataracts in humans36,37.
Given the evidence for association and its biological properties,
variants at the GJA3 locus need to be better characterised in
future studies.

Variants in proximity to the CRYAA and CRYAB gene,
encoding for the two forms of α-crystallin, were associated with
ARNC. The α-crystallins contribute to the clarity and refractive
properties of the lens, may prevent protein damage and protect
against oxidative stress33,34,38. The common variants that we
identified appear to affect transcription and expression of these

genes, as suggested by previous studies where both proteins were
down-regulated in lenses with ARNC13,39,40.

Most of the genes located nearest to our association signals
have functional properties that suggest an involvement in eye
morphogenesis in general and crystallin expression and regula-
tion. This together with the signals from the genes linked to
congenital cataract point to overlap in mechanisms between the
congenital and late-onset forms. In that respect, the genetic
architecture of ARNC likely does not differ from other common
complex conditions where deleterious coding variants cause
congenital forms while common variants regulating gene
expression are associated with increased risk of developing age-
related forms. Given that smoking is an established risk factor for
ARNC, it is also interesting that two of the loci co-localised with
signals from GWAS of smoking. What is intriguing and would
merit further research is the suggested systemic involvement in
the disease. Both the Open Targets colocalization analysis and
LDscore results suggest genetic sharing with metabolic syndrome
components41, age at menarche and other hormonal factors42 in
the pathogenesis of cataract. Systemic risk factors are known to
influence other age-related cataract forms, such as cortical and
diabetic cataracts, and when well-phenotyped and well-powered
GWAS for these phenotypes become available, it will be inter-
esting to see if there is any genetic overlap between those and loci
identified here.

This work has several strengths, such as the use of the largest
sample to date for genetic analysis of ARNC and, more impor-
tantly in the discovery phase, of precisely and quantitatively
phenotyped cohorts. It also provides evidence of genetic
mechanisms shared between congenital and age-related cataract
and shows the importance of common genetic variants in
maintaining crystalline lens integrity in the aging eye.

This study also has some limitations. The GWAS used in this
study employed different grading systems, and despite phenotypic
standardisation before the analyses, some residual heterogeneity
between the studies may not be fully excluded. This study also
sought to maximise the discovery power at the expense of
increasing heterogeneity. We believe that replication was con-
strained by the power in the replication sample: a combined panel
of 2807 cases and 2492 controls would afford sufficient (≥0.7)
power only to the most common and strongest genetic effects
(Fig. S5), which in our case are only encountered in the
SOX2 locus.
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Fig. 2 Common variants in congenital cataract genes. This Manhattan plot shows the association results for the congenital cataract genes. The −log10
(P value) of the most strongly associated variant per gene is plotted against the gene location (in chromosome followed by mega base format: CHR.Mb).
The colour code represents the strength of association in terms of P value.
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However, our conservative approach at dealing with the ethnic
heterogeneity may have uneven power across the regions where
there are significant differences the LD structure between the two
main ancestral groups (European and Asian), or whenever there
are significant differences in the minor allele frequency at certain
loci. These circumstances, however, would have not affected the
specificity of our findings.

Notwithstanding imperfections arising from sample and phe-
notypic availability, this study has doubled the number of loci
positively associated with cataract and improved the proportion
of phenotypic variance explained by them. The remaining herit-
ability gap will be reduced by future with more powered, well-
phenotyped studies and cohorts to further confirm association of
known loci with ARNC and improve our understanding of the
genetic architecture of this age-related cataract type.

Methods
Meta-analyses of summary statistics from GWAS were performed in four cohorts
of European (N= 7352) and four of Asian (N= 6799) ancestry. Genetic variants
associated with ARNC at GWAS (P < 5 × 10−8) or suggestive levels of statistical
significance (P < 1 × 10−6) were carried forward for replication in the four addi-
tional cohorts.

Subjects and phenotyping. The following population-based cohort studies were
included in the meta-analyses: Age-related Eye Diseases Study (AREDS), Blue
Mountains Eye Study (BMES)43, Rotterdam Study I, Rotterdam Study phase III
(RSI-III)44 and TwinsUK45 all of European ancestry, as well as Singapore Malay
Eye Study (SiMES)46, Singapore Indian Eye Study (SINDI)47 and two separate
subsets of the Singapore Chinese Eye Study (SCES)47. Detailed demographic
information and phenotyping methods are shown in the Supplementary Notes and
Supplementary Tables 1 and 2. All studies were conducted with the approval of
their local Research Ethics Committees, and written informed consent was
obtained from all participants, in accordance with the Declaration of Helsinki.

All participants underwent detailed eye examination, including lens
photography after pupil dilation for quantitative assessment of cataract severity in
the discovery phase. Nuclear cataract was graded using standard grading systems
from lens photographs (Supplementary Tables 1 and 2 and Supplementary Note:
Grading systems) and, when scores for both eyes were available, the higher of the
two scores was used in the analyses. Individuals who had undergone cataract
surgery in both eyes were excluded.

In the replication phase, a dichotomous nuclear cataract status (presence or
absence) was used as phenotypic outcome for the association models. This
categorical binary trait was used as only semi-quantitative grading was available
from these study populations, either from slit-lamp grading by clinician or from
lens photography. In the replication phase we used two population-based cohorts
of Asian ancestry, the Beijing Eye Study (BES)48 and India Eye Study-South India
(INDEYE(S)49 as well as two European cohorts, the population-based (Beaver Dam
Eye Study or BDES50) and a clinic-based case–control study (South London Case
Control Study or SLCCS). The definition of cataract cases is shown in
Supplementary Tables 1 and 2; the criteria included AREDS grade 3 or more for
BES48, LOCS III grade 4 or higher for INDEYE(S)49, Wisconsin grade 3 or higher
for BDES50 and LOCS III grade 3 or higher for SLCCS. Controls were individuals
with no significant nuclear opacity at the time of recruitment and no prior history
of cataract surgery.

Genotyping and imputation. Different platforms were used for the genotyping of
each cohort (Supplementary Table 3). All GWAS datasets were imputed against the
1000 Genomes Phase 1, with either IMPUTE2 (ref. 51) or Minimac52.

Statistical analysis. In the discovery phase, we included only cohorts where
ARNC phenotyping was conducted according to an objective, standardised grading
system of nuclear cataract severity. The details of each cohort and ARNC phe-
notyping can be found in Supplementary Tables 1–3, Supplementary Fig. 1 and
Supplementary Notes. The distribution of quantitative ARNC scores was nor-
malised whenever needed, and subsequently standardised within each cohort
(mean 0 and standard deviation 1). The distribution of the transformed phenotypes
is shown in Supplementary Fig. 1. For the replication, we used four cohorts of
nuclear cataract patients and cataract-free controls (Supplementary Tables 2
and 3), not included in the quantitative, discovery phase (due to unavailability of
genome-wide genotyping or quantitative nuclear cataract information).

Each cohort was ancestrally homogeneous: ethnic outliers were identified
through Principal Component Analysis clustering and excluded from subsequent
analyses. Genome-wide association analyses were performed in each cohort
separately by building additive linear regression models, with the standardised
ARNC score as the dependent variables and the number of alleles at each genetic
locus as the explanatory variables, adjusting for age, sex and, when appropriate,

principal components. In TwinsUK, linear mixed models with a kinship matrix as a
random effect term (GEMMA)53 were used to account for non-independence of
observations due to familial relationships.

Fixed-effect inverse-variance meta-analyses using METAL54 were performed on
the GWAS summary statistics provided by each study for all variants with MAF
>1%, genotyping call rate >0.97 and imputation quality >0.3 (the ‘RSQ’ parameter
in MACH55 or ‘info’ for IMPUTE51) that were present in at least three of the
European or at least three of the Asian cohorts. Additionally, variants showing high
heterogeneity (I2 > 0.75) were excluded.

Gene-based analyses were performed using GATES56 and gene set enrichment
analysis using PASCAL57. The proportion of genetic variance explained by
associated SNPs was calculated using individual-level data using GCTA58. Shared
heritability between ARNC and other traits, for which GWAS results were available
through the LDscore Hub website, was calculated using linkage disequilibrium
score regression59, taking Europeans as a reference.

Genome-wide associated SNPs showing suggestive association (P < 10−6) in the
discovery phase were taken forward to the replication stage of this study. We
performed logistic regressions within each replication cohort, followed by an
inverse-variance meta-analysis. Finally, SNPs that were identified through
discovery and were genotyped in replication cohorts were meta-analysed together
through a sample size-weighted P value analysis using METAL54.

Gene expression in publicly available databases. Gene expression data in
human and mouse lens were obtained using publicly available databases: iSyte60,
Ocular tissue database and the Mouse Genome informatics (MGI) gene expression
database. Expression patterns were examined not only for the gene closest to the
most strongly associated variant in each associated region, but also for all other
genes in in the same LD block with them.

eQTL analysis. Lens tissue eQTLs are not currently available, but as eQTL effects
are often shared between tissues61,62, we assessed whether SNPs associated with
nuclear cataract (P < 1 × 10−5) regulate gene expression of adjacent genes (i.e. have
eQTL effects) by searching publicly available data (GTEx)63 and the available
literature64.

Regulatory elements. The most significantly associated variant at each locus was
annotated for regulatory functions (enhancer histone modification signals, DNase I
hypersensitivity, binding of transcription factors or effects on regulatory motifs),
using HaploReg65 and ENCODE data track in the UCSC genome browser.

Additional annotation and data integration. Additional annotation and data
integration were performed using FUMA (https://fuma.ctglab.nl, SNP2GENE and
GENE2FUNCTION) and Open Targets Genetics (https://genetics.opentargets.org/,
sentinel-variant PheWAS and candidate gene co-localisation).

Congenital cataract genes. Given the significant associations of markers within or
in the proximity of congenital cataract genes such as GJA3 and CRYAA, we
enquired whether other common variants within genomic regions hosting addi-
tional known congenital cataract loci66,67 were associated with ARNC. We
explored association for a list of genes linked to congenital cataract by an extensive
literature search and by using following databases: Online Mendelian Inheritance
in Man (OMIM), Cataract Map (Cat-Map) and Clinical Variants (ClinVar). Each
database was queried for variants within a 100 kb window and within the same LD
block as the strongest associated SNP.

Web resources. http://genome.ucsc.edu/
http://ldsc.broadinstitute.org/
https://genome.uiowa.edu/otdb/
http://Supplemental.informatics.jax.org/
http://Supplemental.gtexportal.org/home/
http://omim.org/
https://cat-map.wustl.edu/
https://Supplemental.ncbi.nlm.nih.gov/clinvar/
https://fuma.ctglab.nl
https://genetics.opentargets.org/

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics are available in Supplementary Data 3. Individual-level
data can be requested by contacting the participating studies.
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