199 research outputs found
Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records
Bipolar disorder (BD) is a heritable mood disorder characterized by episodes of mania and depression. Although genomewide association studies (GWAS) have successfully identified genetic loci contributing to BD risk, sample size has become a rate-limiting obstacle to genetic discovery. Electronic health records (EHRs) represent a vast but relatively untapped resource for high-throughput phenotyping. As part of the International Cohort Collection for Bipolar Disorder (ICCBD), we previously validated automated EHR-based phenotyping algorithms for BD against in-person diagnostic interviews (Castro et al. Am J Psychiatry 172:363–372, 2015). Here, we establish the genetic validity of these phenotypes by determining their genetic correlation with traditionally ascertained samples. Case and control algorithms were derived from structured and narrative text in the Partners Healthcare system comprising more than 4.6 million patients over 20 years. Genomewide genotype data for 3330 BD cases and 3952 controls of European ancestry were used to estimate SNP-based heritability (h2g) and genetic correlation (rg) between EHR-based phenotype definitions and traditionally ascertained BD cases in GWAS by the ICCBD and Psychiatric Genomics Consortium (PGC) using LD score regression. We evaluated BD cases identified using 4 EHR-based algorithms: an NLP-based algorithm (95-NLP) and three rule-based algorithms using codified EHR with decreasing levels of stringency—“coded-strict”, “coded-broad”, and “coded-broad based on a single clinical encounter” (coded-broad-SV). The analytic sample comprised 862 95-NLP, 1968 coded-strict, 2581 coded-broad, 408 coded-broad-SV BD cases, and 3 952 controls. The estimated h2g were 0.24 (p = 0.015), 0.09 (p = 0.064), 0.13 (p = 0.003), 0.00 (p = 0.591) for 95-NLP, coded-strict, coded-broad and coded-broad-SV BD, respectively. The h2g for all EHR-based cases combined except coded-broad-SV (excluded due to 0 h2g) was 0.12 (p = 0.004). These h2g were lower or similar to the h2g observed by the ICCBD + PGCBD (0.23, p = 3.17E−80, total N = 33,181). However, the rg between ICCBD + PGCBD and the EHR-based cases were high for 95-NLP (0.66, p = 3.69 × 10–5), coded-strict (1.00, p = 2.40 × 10−4), and coded-broad (0.74, p = 8.11 × 10–7). The rg between EHR-based BD definitions ranged from 0.90 to 0.98. These results provide the first genetic validation of automated EHR-based phenotyping for BD and suggest that this approach identifies cases that are highly genetically correlated with those ascertained through conventional methods. High throughput phenotyping using the large data resources available in EHRs represents a viable method for accelerating psychiatric genetic research
The PEER Collaborative: Supporting Engineering Education Research Faculty with Near-peer Mentoring Unconference Workshops
The PEER Collaborative National Network is a national peer mentoring network for early career tenure-track or mid-career tenured faculty who conduct and are primarily evaluated based on their research related to engineering education. This paper discusses the development, logistics, and outcomes of two PEER workshops built around a community of practice framework. Data from internal and external evaluations are presented to provide insights into aspects that worked well and aspects that need further development. Additionally, by reflecting on the workshops, participants crafted vignettes describing the impact the PEER workshops had on their personal and professional lives. The paper concludes with a discussion on the future of PEER (and potential spin-off groups from the PEER cohorts), and the changes that will be made in future workshops. Recommendations are provided for other organizers interested in developing successful “near peer” groups to address specific community needs
MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells
Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4 deficient TS cells defines an H2B acetylation regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveal previously unrecognized genes potentially contributing to breast cancer
Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies
Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells’ (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo–derived senescence signature (SenSig) using a foreign body response–driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and “cartilage-like” fibroblasts as senescent and defined cell type–specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34–CSF1R–TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.</p
Transfer learning in a biomaterial fibrosis model identifies in vivo senescence heterogeneity and contributions to vascularization and matrix production across species and diverse pathologies
Cellular senescence is a state of permanent growth arrest that plays an important role in wound healing, tissue fibrosis, and tumor suppression. Despite senescent cells’ (SnCs) pathological role and therapeutic interest, their phenotype in vivo remains poorly defined. Here, we developed an in vivo–derived senescence signature (SenSig) using a foreign body response–driven fibrosis model in a p16-CreERT2;Ai14 reporter mouse. We identified pericytes and “cartilage-like” fibroblasts as senescent and defined cell type–specific senescence-associated secretory phenotypes (SASPs). Transfer learning and senescence scoring identified these two SnC populations along with endothelial and epithelial SnCs in new and publicly available murine and human data single-cell RNA sequencing (scRNAseq) datasets from diverse pathologies. Signaling analysis uncovered crosstalk between SnCs and myeloid cells via an IL34–CSF1R–TGFβR signaling axis, contributing to tissue balance of vascularization and matrix production. Overall, our study provides a senescence signature and a computational approach that may be broadly applied to identify SnC transcriptional profiles and SASP factors in wound healing, aging, and other pathologies.</p
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
- …