218 research outputs found

    An approximate solution of one class of singular integro-differential equations

    Get PDF
    AbstractThe problem of definition of mechanical field in a homogeneous plate supported by finite inhomogeneous inclusion is considered. The contact between the plate and inclusion is realized by a thin glue layer. The problem is reduced to the boundary value problem for singular integro-differential equations. Asymptotic analysis is carried out. Using the method of orthogonal polynomials, the problem is reduced to the solution of an infinite system of linear algebraic equations. The obtained system is investigated for regularity

    Evaluation of Behavioral Factors for Periodontal Inflammatory Diseases in the Georgian Students Population and Correlations with Parents' Social Status

    Get PDF
    Objective: This study examined the relationship between behavioral factors, parents’ social status and inflammatory periodontal diseases among the Georgian students’ population. Methods: The study was based on the results of the examination of 400 medical students aged 18 to 35 (mean age 20.94+1.98) in Tbilisi universities. Students were selected random. The study was conducted according to a questionnaire developed by us, which includes the probable predictors of the periodontium - socio-biological characteristics, hygienic habits, harmful habits, type of diet, and parents’ social status. We used the Greene-Vermllion Hygiene Index to determine oral hygiene status. Statistical Analysis: Categorical variables are expressed by frequencies and percentag. Categorical variables were compared using Fisher's exact test. Correlation analysis between variables was performed by Spearman's correlation analysis. A p-value <0.05 was considered statistically significant. Statistical analyses were performed using SPSS for Windows, version 23. European Scientific Journal, ESJ ISSN: 1857-7881 (Print) e - ISSN 1857-7431 June 2021 Special Edition: Actual Problems of Medicine and Dentistry www.eujournal.org 22 Results : Among students who had inflammatory periodontal disease, had a high incidence of predominantly food carbohydrates, frequent consumption of sweet and spicy foods, fast foods and synthetic beverages, diet, smoking. Bad or very bad oral hygiene. It identifies the role of social factors in the manifestation of the disease. The hygiene index correlates with the periodontal index r=0.312, p=0.009. Conclusion: In Georgian population the inflammatory periodontal diseases have a incredibly high unsatisfactory hygenic status. The incidence of individuals is high, who undergo professional cleaning once or more rarely a year, and who use a circular movement, when brushing their teeth. Also who intake carbohydrates and fast and spicy foods, sweets, using of synthetic liquids and who smoke. A relation among inflammatory periodontal diseases, socio- economic status, and correlation of parents’ social status to oral care habits have been identified. Awareness of the need for dental services, the development of oral care habits, healthy diet, the prevention of manageable risk factors, hygiene, and professional cleaning of teeth is recommended for the prevention of periodontal inflammatory diseases

    The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus

    Get PDF
    Hibernation is a crucial strategy of winter survival used by many mammals. During hibernation, thirteen-lined ground squirrels, Ictidomys tridecemlineatus, cycle through a series of torpor bouts, each lasting more than a week, during which the animals are largely immobile. Previous hibernation studies have demonstrated that such natural models of skeletal muscle disuse cause limited or no change in either skeletal muscle size or contractile performance. However, work loop analysis of skeletal muscle, which provides a realistic assessment of in vivo power output, has not previously been undertaken in mammals that undergo prolonged torpor during hibernation. In the present study, our aim was to assess the effects of 3 months of hibernation on contractile performance (using the work loop technique) and several biochemical properties that may affect performance. There was no significant difference in soleus muscle power output-cycle frequency curves between winter (torpid) and summer (active) animals. Total antioxidant capacity of gastrocnemius muscle was 156% higher in torpid than in summer animals, suggesting one potential mechanism for maintenance of acute muscle performance. Soleus muscle fatigue resistance was significantly lower in torpid than in summer animals. Gastrocnemius muscle glycogen content was unchanged. However, state 3 and state 4 mitochondrial respiration rates were significantly suppressed, by 59% and 44%, respectively, in mixed hindlimb skeletal muscle from torpid animals compared with summer controls. These findings in hindlimb skeletal muscles suggest that, although maximal contractile power output is maintained in torpor, there is both suppression of ATP production capacity and reduced fatigue resistance

    Erratum to: Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice

    Get PDF
    Gadd45α (A), Runx1 (B), Chrnd (C), Chrng (D), Musk (E), and Myog (F) mRNA in the quadriceps muscles of 15-month SED, 23-month SED, and 23-month RWE mice, of both sexes. Gene expression in the quadriceps muscles was normalized to the geometric mean of Hprt and Ppia expression values. Data were analyzed by ANOVA, using age and sex, and sex and activity as variables. Data are mean ± SEM. Asterisk (*) denotes significance at *P < 0.05; **P < 0.01; ***P < 0.001. For each age group, N = 5–9 mice/group. Y-axes represent arbitrary units

    Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in Geriatric Mouse Muscle

    Get PDF
    Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia

    Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 1–5 years after disease onset. Therapeutic options remain limited despite a substantial number of approaches that have been tested clinically. In particular, various neurotrophic factors have been investigated. Failure in these trials has been largely ascribed to problems of insufficient dosing or inability to cross the blood–brain barrier (BBB). We have recently uncovered the neurotrophic properties of the haematopoietic protein granulocyte-colony stimulating factor (G-CSF). The protein is clinically well tolerated and crosses the intact BBB. This study examined the potential role of G-CSF in motoneuron diseases. We investigated the expression of the G-CSF receptor in motoneurons and studied effects of G-CSF in a motoneuron cell line and in the SOD1(G93A) transgenic mouse model. The neurotrophic growth factor was applied both by continuous subcutaneous delivery and CNS-targeted transgenic overexpression. This study shows that given at the stage of the disease where muscle denervation is already evident, G-CSF leads to significant improvement in motor performance, delays the onset of severe motor impairment and prolongs overall survival of SOD1(G93A)tg mice. The G-CSF receptor is expressed by motoneurons and G-CSF protects cultured motoneuronal cells from apoptosis. In ALS mice, G-CSF increased survival of motoneurons and decreased muscular denervation atrophy. We conclude that G-CSF is a novel neurotrophic factor for motoneurons that is an attractive and feasible drug candidate for the treatment of ALS

    Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    Get PDF
    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness

    The aged niche disrupts muscle stem cell quiescence

    Get PDF
    SUMMARY The niche is a conserved regulator of stem cell quiescence and function. During aging, stem cell function declines. To what extent and by which means age-related changes within the niche contribute to this phenomenon are unknown. We demonstrate that the aged muscle stem cell niche, the muscle fiber, expresses FGF2 under homeostatic conditions, driving a subset of satellite cells to break quiescence and lose self-renewing capacity. We show that relatively dormant aged satellite cells robustly express Sprouty1 (spry1), an inhibitor of FGF signalling. Increasing FGF signalling in aged satellite cells under homeostatic conditions by removing spry1, results in the loss of quiescence, satellite cell depletion and diminished regenerative capacity. Conversely, reducing niche-derived FGF activity through inhibition of FGFR1 signalling or overexpression of spry1 in satellite cells prevents their depletion. These experiments identify an age-dependent change in the stem cell niche that directly influences stem cell quiescence and function

    The Regulatory Status Adopted by Lymph Node Dendritic Cells and T Cells During Healthy Aging Is Maintained During Cancer and May Contribute to Reduced Responses to Immunotherapy

    Get PDF
    Aging is associated with an increased incidence of cancer. One contributing factor could be modulation of immune cells responsible for anti-tumor responses, such as dendritic cells (DCs) and T cells. These immunological changes may also impact the efficacy of cancer immunotherapies in the elderly. The effects of healthy aging on DCs and T cells, and their impact on anti-mesothelioma immune responses, had not been reported. This study examined DCs and T cells in young (2-5 months; equivalent to 16-26 human years) and elderly (20-24 months; equivalent to 60-70 human years) healthy and mesothelioma-bearing C57BL/6J mice. During healthy aging, elderly lymph nodes adopted a regulatory profile, characterized by: (i) increased plasmacytoid DCs, (ii) increased expression of the adenosine-producing enzyme CD73 on CD11c+ cells, and (iii) increased expression of multiple regulatory markers (including CD73, the adenosine A2B receptor, CTLA-4, PD-1, ICOS, LAG-3, and IL-10) on CD8+ and CD4+ T cells, compared to lymph nodes from young mice. Although mesotheliomas grew faster in elderly mice, the increased regulatory status observed in healthy elderly lymph node DCs and T cells was not further exacerbated. However, elderly tumor-bearing mice demonstrated reduced MHC-I, MHC-II and CD80 on CD11c+ cells, and decreased IFN-? by CD8+ and CD4+ T cells within tumors, compared to young counterparts, implying loss of function. An agonist CD40 antibody based immunotherapy was less efficient at promoting tumor regression in elderly mice, which may be due to: (i) failure of elderly CD8+ T cells to up-regulate perforin, and (ii) increased expression of multiple regulatory markers on CD11c+ cells and T cells in elderly tumor-draining lymph nodes (including CD73, PD-1, ICOS, LAG-3, and TGF-ß). Our findings suggest that checkpoint blockade may improve responses to immunotherapy in elderly hosts with mesothelioma, and warrants further investigation
    • …
    corecore