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The investigation of singular integro-differential equations relating to adhesive contact1

problems of the theory of viscoelasticity2

Nugzar Shavlakadze , Nana Odishelidze and Francisco Criado-Aldeanueva3

Abstract. The exact and approximate solutions of singular integro-differential equations relating to the problems of inter-4

action of an elastic thin finite or infinite non-homogeneous patch with a plate are considered, provided that the materials5

of plate and patch possess the creep property. Using the method of orthogonal polynomials the problem is reduced to the 16

infinite system of Volterra integral equations, and using the method of integral transformations this problem is reduced to 27

the different boundary value problems of the theory of analytic functions. An asymptotic analysis is also performed. 38

The considerable development of the hereditary theory of Bolzano–Volterra mechanics has been defined9

by various technical applications in the theory of metals, plastics and concrete and in mining engineering.10

The fundamentals of the theory of viscoelasticity, the methods for solving linear and nonlinear problems11

of the theory of creep, the problems of mechanics of inhomogeneously ageing viscoelastic materials, some12

boundary value problems of the theory of growing solids, the contact and mixed problems of the theory13

of viscoelasticity for composite inhomogeneously ageing and nonlinearly-ageing bodies are considered in14

[1–4].15

The full investigation of various possible forms of viscoelastic relations and of some aspects of the16

general theory of viscoelasticity are studied in [5–8]. Research on the field of creep materials can be found17

in [9–12].18

Contact and mixed boundary value problems on the transfer of the load from elastic thin-walled ele-19

ments (stringers, inclusions, patches) to massive deformable (including aging viscoelastic) bodies, as well20

as on the indentation of a rigid stamp into the surface of a viscoelastic body, represent an urgent prob-21

lem both in theoretical and applied aspects. Problems of this type are often encountered in engineering22

applications and lead themselves to rigorous mathematical research due to their applied significance.23

Exact and approximate solutions to static contact problems for different domains, reinforced with non-24

homogeneous elastic thin inclusions and patches were obtained, and the behavior of the contact stresses25

at the ends of the contact line were investigated in [13–16]. One type of analysis assumes continuous26

interaction and the other the adhesive contact of thin-shared elements (stringers or inclusions) with27

massive deformable bodies. As is known, stringers and inclusions, such as rigid punches and cuts, are areas28

of stress concentration. Therefore, the study of the problems of stress concentration and the development29

of various methods for its reduction is of great importance in engineering practice.30

In work [17] we consider integro-differential equations with a variable coefficient relating to the inter-31

action of an elastic thin finite inclusion and plate, when the inclusion and plate materials possess the creep32

property. Here continuous contact between inclusion and plate is considered. The solutions to integro-33

differential equations of the first order are obtained on the basis of investigations of different boundary34

value problems of the theory of analytic functions. The asymptotic behavior of unknown contact stresses35

is established.36

In this paper, in contrast to work [17], contact with a thin layer of glue is studied when the patch, plate37

and adhesive materials have the property of creep. A second-order singular integro-differential equation38
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was obtained. Here the asymptotic analysis was also carried out and approximate and exact solutions39

were obtained for various cases.40

1. Formulation of the problems and reduction to integral equations41

Let a finite or infinite non-homogeneous patch with modulus of elasticity E1, thickness h1(x) and Poisson’s42

coefficient ν1 be attached to the plate (E2, ν2), which occupies the entire complex plane and is in the43

condition of a plane deformation. It is assumed that the patch, as thin element, is glued to the plate44

along the real axis, has no bending rigidity, is in the uniaxial stressed state and is subject only to tension.45

The tangential stress q0(x)H(t − t0) acts on the line of contact between the inclusion and the plate from46

t0 (H(t) is the unit Heaviside function). The one-dimensional contact between the plate and patch is47

affected by a thin layer of glue with thickness h0 and modulus of shear G0.48

It is assumed that the plate, patch and glue layer materials have the creep property which is char-49

acterized by the non-homogeneity of the ageing process and has different creep measures Ci(t, τ) =50

ϕi(τ)[1 − e−γ(t−τ)], where ϕi(τ) are the functions that define the ageing process of the plate, patch and51

glue layer materials; the age of the different materials is τi(x) = τi = const; γ = const > 0, i = 1, 2, 3.52

Besides, the plate Poisson’s coefficients for elastic-instant deformation ν2(t) and creep deformation53

ν2(t, τ) are the same and constant: ν2(t) = ν2(t, τ) = ν2 = const.54

Assuming that every element of the glue layer is under the condition of pure shear, the contact55

condition has the form [18]56

u1(t, x) − u2(t, x, 0) = k0(I − L3)q(t, x), |x| ≤ 1, (1)57

where u2(t, x, y) is the displacement of the plate points along the ox-axis and k0:=h0/G0, u1(t, x) is the58

displacement of the inclusion points along the ox-axis, I is the unit operator.59

We have to define the law of distribution of tangential contact stresses q(t, x) on the line of contact60

and the asymptotic behavior of these stresses at the end of the patch.61

To define the unknown contact stresses we obtain the following integral equation (see [1–4] )62

2(1 − ν2
2)

πE2
(I − L2)

∫ 1

−1

q(t, y) dy

y − x
63

=
1

E(x)
(I − L1)

∫ x

−1

[q(t, y) − q0(y)H(t − t0)] dy − k0(I − L3)q
′(t, x), |x| < 1,64

∫ 1

−1

[q(t, y) − q0(y)H(t − t0)] dy = 0 (2)65

where time operators Li = 1, 2, 3 act on an arbitrary function in the following manner:66

(I − Li)ψ(t) = ψ(t) −
∫ t

τ0
i

Ki(t + ρi, τ + ρi)ψ(τ) dτ, ρi = τi − τ0
i , i = 1, 2, 3,67

Ki(t, τ) = Ei
∂Ci(t, τ)

∂τ
, i = 1, 2, K3(t, τ) = G0

∂C3(t, τ)

∂τ
,68

ω(t, τ) = ϕ3(τ)[1 − e−γ(1−τ)], E(x) =
E1h1(x)

1 − ν2
1

,69

70

where τ0
i = t0 is the instant of load application.71

Introducing the notation72

ϕ(t, x) =

∫ x

−1

[q(t, y) − q0(y)H(t − t0)] dy, λ =
2(1 − ν2

2)

E2
73
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from (2) we obtain the following two-dimensional integro-differential equation74

λ

π
(I − L2)

∫ 1

−1

ϕ′(t, y) dy

y − x
=

1

E(x)
(I − L1)ϕ(t, x) − k0(I − L3)ϕ

′′(t, x) + g(t, x), |x| < 1,75

g(t, x) = −λ

π
(1 − E2ϕ2(t)(1 − e−γ(t−t0)))

∫ 1

−1

q0(y) dy

y − x
− k0q

′
0(x)(1 − G0ϕ3(t)(1 − e−γ(t−t0)))(3)76

with conditions77

ϕ(t, 1) = 0, t ≥ t0 (4)78

Thus, the above posed boundary contact problem is reduced to the solution to singular integro-79

differential equation (SIDE) with condition (4). From the symmetry of the problem, we assume, that80

E(x) and q0(x) are even and odd functions, respectively. The solution of Eq. (3) under condition (4) with81

respect to variable x can be sought in the class of even functions. Moreover, we assume that function82

q0(x) is continuous in Holder’s sense (hereinafter, H) and is continuous up to the first order derivative83

on an interval [−1, 1], i.e. q0 ∈ C1([−1, 1]).84

2. The asymptotic investigation85

Under the assumption that86

E(x) = (1 − x2)ωb0(x), (5)87

where ω = const ≥ 0, b0(x) = b0(−x), b0 ∈ C([−1, 1]), b0(x) ≥ c0 = const > 0, the solution to problem88

(3), (4) will be sought in the class of even function whose derivative with respect to variable x can be89

represented as follows:90

ϕ′(t, x) = (1 − x2)αg0(t, x), α > −1, (6)91

where g0(t, x) = −g0(t,−x), g0 ∈ C1([−1, 1]), g0(t, x) �= 0, x ∈ [−1, 1]. ϕ′(t, x) represents the unknown92

tangential contact stress.93

Introducing the notation94

Φ0(x, t) =

∫ 1

−1

(1 − s2)αg0(t, s)

s − x
ds95

by virtue of the well-known asymptotic formula [28] we have for −1 < α < 096

Φ0(x, t) = ∓π ctgπα g0(t,∓1)2α(1 ± x)α + Φ±(x, t), x → ∓1;97

Φ∓(x, t) = Φ∗
∓(x, t)(1 ± x)α± , α± = const > α98

99

and for α = 0100

Φ0(x, t) = ∓g0(t,∓1) ln(1 ± x) + Φ̃±(x, t), x → ∓1101

Functions Φ∗
∓(x, t) and Φ̃∓(x, t) satisfy (H)’s condition in a neighborhood of the points x = ∓1, respec-102

tively.103

In case α > 0 function Φ0(x, t) belongs to the (H) class in a neighborhood of the points x = ±1.104

In addition, we have [22]105

∫ x

−1

(1 − s2)αg0(t, s) ds =
2α(1 ± x)α+1

α + 1
g0(t,∓1)F (α + 1,−α, 2 + α, (1 ± x)/2) + G∓(x, t), x → ∓1,106

lim
x→∓1

G∓(x, t)(1 ± x)−(α+1) = 0107
108

where F (a, b, c, x) is a hypergeometric Gaussian function.109

The case −1 < α < 0 is not of interest, since negative values of the indicator α contradict the physical110

meaning of condition (1).111
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_####_ Page 4 of 15 N. Shavlakadze, N. Odishelidze and F. Criado-Aldeanueva ZAMP

Let 0 ≤ α ≤ 1, then in a neighborhood of the points x = −1 equation (3) can be written in the112

following form113

(I − L2)Ψ(x, t) +
2α(1 + x)2+ε(I − L1)g0(−1, t)

2ω(α + 1)(1 + x)ωb0(−1)
+ (I − L1)G−(x, t)(1 + x)1+ε−α

114

−k02
α(1 + x)ε(I − L3)g̃0(−1, t) = g(−1, t)(1 + x)1+ε−α

115

Ψ(x, t) =

{
λg0(−1, t)(1 + x)1+ε ln(1 + x) − λ

π (1 + x)1+εΦ̃−(x, t), for α = 0

−λ
π (1 + x)1+ε−αΦ0(x, t), for α �= 0

(7)116

where ε is an arbitrarily small positive number. When passing to limit x → −1, the analysis of the117

obtained equations leads to the necessity of satisfying inequality 2 + ε > ω, i.e. ω ≤ 2.118

In case α > 1 from (7) it follows that α = ω − 1.119

An analogous result is obtained in the neighborhood of the point x = 1.120

The obtained results can be formulated as follows:121

Theorem 1. Assuming that (5) holds, if problem (3),(4) has the solution in the form (6), then:122

• If ω > 2 then α = ω − 1, (α > 1)123

• If ω ≤ 2 then 0 ≤ α ≤ 1.124

Conclusion. If the patch rigidity varies by the law125

E(x) = (1 − x2)n+1/2b0(x),126

where b0(x) > 0 for |x| ≤ 1, b0(x) = b0(−x), n ≥ 0 is integer, then from the above asymptotic analysis,127

we obtain:128

α = n − 1

2
, for n = 2, 3, . . .129

and 0 < α < 1 for n = 0 or n = 1 (the same result is obtained for E(x) = b0(x) > 0 or E(x) = const,130

|x| ≤ 1).131

3. An approximate solution to SIDE (3)132

From the relation133

1

π

∫ 1

−1

(1 − s)α(1 + s)βP
(α,β)
m (s) ds

s − x
= ctgπα(1 − x)α(1 + x)βP (α,β)

m (x)−134

2α+βΓ(α)Γ(β + m + 1)

πΓ(α + β + m + 1)
F (m + 1,−α − β − m, 1 − α, (1 − x)/2)135

136

obtained by Tricomi [19] for orthogonal Jacobi polynomials P
(α,β)
m (x) and from the well-known equality137

(see [20]).138

m!P (α,β)
m (1 − 2x) =

Γ(α + m + 1)

Γ(1 + α)
F (α + β + m + 1,−m, 1 + α, x)139

we get the following spectral relation for the Hilbert singular operator140

∫ 1

−1

(1 − s2)n−1/2P
(n−1/2,n−1/2)
m (s) ds

s − x
= (−1)n22n−1πP

(1/2−n,1/2−n)
m+2n−1 (x), (8)141

where Γ(z) is the known Gamma function.142
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1. On the basis of the above asymptotic analysis performed in the cases143

n = 0;n = 1; E(x) = b0(x) > 0; E(x) = const, |x| ≤ 1;144

the solution to equation (3) will be sought in the form145

ϕ′(t, x) =
√

1 − x2

∞∑

k=1

Xk(t)P
(1/2,1/2)
k (x), (9)146

where function Xk(t) has to be defined for k = 1, 2, . . ..147

Using relation (8) and the Rodrigues formula (see [21]) for (9) we obtain148

∫ 1

−1

√
1 − t2P

(1/2,1/2)
k (t) dt

t − x
= −2πP

(−1/2,−1/2)
k+1 (x),149

ϕ(t, x) = −(1 − x2)3/2
∞∑

k=1

Xk(t)

2k
P

(3/2,3/2)
k−1 (x),150

ϕ′′(t, x) = −2(1 − x2)−1/2
∞∑

k=1

kXk(t)P
(−1/2,−1/2)
k+1 (x). (10)151

Substituting relation (9), (10) into equation (3), we have152

− (1 − x2)3/2

E1(x)
(I − L1)

∞∑

r=1

Xk(t)

2k
P

(3/2,3/2)
k−1 (x) − 2λ0(I − L2)

∞∑

k=1

Xk(t)P
(−1/2,−1/2)
k+1 (x) +153

2k0(1 − x2)−1/2(I − L3)

∞∑

k=1

kXk(t)P
(−1/2,−1/2)
k+1 (x) = g(t, x), |x| ≤ 1. (11)154

Multiplying both parts of equality (11) by P
(−1/2,−1/2)
m+1 (x) and integrating in the interval (−1, 1),155

we obtain an infinite system of Volterra’s linear integral equations156

k0m

(
Γ(m + 3/2)

Γ(m + 2)

)2

(I − L3)Xm(t) −
∞∑

k=1

R
(2)
mk(I − L2)Xk(t) −

∞∑

k=1

R
(1)
mk

k
(I − L1)Xk(t) = gm(t),157

m = 1, 2, . . . (12)158

where159

R
(1)
mk =

1

2

∫ 1

−1

(1 − x2)3/2

E(x)
P

(3/2,3/2)
k−1 (x)P

(−1/2,−1/2)
m+1 (x) dx,160

R
(2)
mk = −2λ

∫ 1

−1

P
(−1/2,−1/2)
k+1 (x)P

(−1/2,−1/2)
m+1 (x) dx161

gm(t) =

∫ 1

−1

g(t, x)P
(−1/2,−1/2)
m+1 (x) dx.162

163

Introducing the notation164

Tm(t) = ωm

[
k0Xm(t) −

∞∑

k=1

R
(1)
mk

kωk
Xk(t) −

∞∑

k=1

R
(2)
mk

ωk
Xk(t)

]
,165

where166

ωm = m

(
Γ(m + 3/2)

Γ(m + 2)

)2

→ 1, m → ∞167
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_####_ Page 6 of 15 N. Shavlakadze, N. Odishelidze and F. Criado-Aldeanueva ZAMP

system (12) will take the form168

Tm(t) − k0

∫ t

t0

K3(t − τ)Xk(τ) dτ +
∞∑

k=1

R
(1)
mk

kωk

∫ t

t0

K1(t − τ)Xk(τ) dτ169

+

∞∑

k=1

R
(2)
mk

ωk

∫ t

t0

K2(t − τ)Xk(τ) dτ = gm(t), m = 1, 2, . . . (13)170

In condition G0ϕ3(t) = E1ϕ1(t) = E2ϕ2(t) system (13) reduces to the following ordinary171

differential equation of second order172

T̈m(t) + γ(1 + G0ϕ3(t))Ṫm(t) = g̈m(t) + γġm(t), (14)173

with initial conditions:174

Tm(t0) = 0, Ṫm(t0) = ġm(t0)175

The solution to this differential equation gives an infinite system of linear algebraic equations with176

respect to Xm(t), m = 1, 2, . . .177

k0Xm(t) −
∞∑

k=1

R
(1)
mk

kωk
Xk(t) −

∞∑

k=1

R
(2)
mk

ωk
Xk(t) =

Tm(t)

ωm
(15)178

where179

Tm(t) = ġm(t0)

∫ t

t0

dτ

α(τ)
+

∫ t

t0

dτ

α(τ)

∫ τ

t0

[g̈m(s) + γġm(s)]α(s) ds,180

α(t) = exp

∫ t

t0

γ(1 + G0ϕ3(s)) ds181

182

Let us investigate system (15) for regularity in the class of bounded sequences using the known183

relations for the Chebyshev first-order polynomials and for the Gamma function [5]184

P (−1/2,−1/2)
m (x) =

Γ(m + 1/2)√
πΓ(m + 1)

Tm(x), Tm(cos(θ)) = cos mθ, lim
m→∞

mb−a Γ(m + a)

Γ(m + b)
= 1185

186

we have187

R
(2)
mk = − 2λα(k)β(m)

π
√

(k + 1)(m + 1)

∫ π

0

cos(k + 1)θ cos(m + 1)θ sin θ dθ188

= − 2λα(k)β(k)

π
√

(k + 1)(m + 1)
×

{
1 − 1

(2m+3)(2m+1) , k = m

− (−1)k+m+1
2

[
1

(k+m+3)(k+m+1) + 1
(k−m+1)(k−m−1)

]
, k �= m,

189

=

{
O(m−1), k = m, m → ∞
O(m−5/2), O(k−5/2), k �= m, k, m → ∞,

,190

191

where α(k), β(m) → 1, when k, m → ∞.192

By virtue of the Darboux asymptotic formula (see [8]), we obtain analogous estimates for193

R
(1)
mk =

{
O(m−1), k = m, m → ∞,

O(m−5/2), O(k−1/2), k �= m, k, m → ∞
194

and the right-hand side Tm(t)/ωm of equation (15) satisfies at least the estimate195

Tm(t)

ωm
= O(m−1/2), m → ∞196
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ZAMP The investigation of singular integro-differential equations Page 7 of 15 _####_

2. If n = 2 the solution to equation (3) will be sought in the form197

ϕ′(t, x) = (1 − x2)3/2
∞∑

k=1

Yk(t)P
(3/2,3/2)
k (x), (16)198

where numbers Yk have to be defined for k = 1, 2, . . ..199

Using the relation arising from (8) and from the Rodrigues formula (see [21]) for the orthogonal200

Jacobi polynomials, we get201

1

π

∫ 1

−1

(1 − x2)3/2P
(3/2,3/2)
k (t) dt

t − x
= −2πP

(−3/2,−3/2)
k+1 (x),202

ϕ(t, x) = −(1 − x2)5/2
∞∑

k=1

Yk(t)

2k
P

(5/2,5/2)
k−1 (x),203

ϕ′′(t, x) = −2(1 − x2)1/2
∞∑

k=1

kYk(t)P
(1/2,1/2)
k+1 (x). (17)204

Similarly as for system (15), we obtain205

δmYm(t) −
∞∑

k=1

(
R

(3)
mk +

R
(4)
mk

k

)
Yk(t) = T̃m(t), m = 1, 2, . . . (18)206

where207

R
(3)
mk = −2λ

∫ 1

−1

P
(−3/2,−3/2)
k+1 (x)P

(1/2,1/2)
m+1 (x) dx,208

R
(4)
mk =

1

2

∫ 1

−1

1

b0(x)
P

(5/2,5/2)
k−1 (x)P

(1/2,1/2)
m+1 (x) dx,209

g̃m(t) =

∫ 1

−1

g(t, x)P
(1/2,1/2)
m+1 (x) dx210

δm = 4k0m

(
Γ(m + 5/2)

Γ(m + 3)

)2

→ 1, m → ∞,211

T̃m(t) = ˙̃gm(t0)

∫ t

t0

dτ

α(τ)
+

∫ t

t0

dτ

α(τ)

∫ τ

t0

[¨̃gm(s) + γ ˙̃gm(s)]α(s) ds.212

213

Using again the Darboux formula, and the known relation for the Chebyshev second-order polyno-214

mials (see [21,22])215

P (1/2,1/2)
m (x) =

Γ(m + 3/2)√
πΓ(m + 2)

Um(x), Um(cos θ) =
sin(n + 1)θ

sin θ
,216

we obtain the following estimates:217

R
(3)
mk =

{
O(m−1), k = m, m → ∞,

O(m−5/2), O(k−5/2), k �= m, k, m → ∞,
218

R
(4)
mk =

{
O(m−1), k = m, m → ∞,

O(m−1/2), O(k−1/2), k �= m, k, m → ∞,
,219

g̃m = O(m−1/2), m → ∞.220
221

Thus, systems (15) and (18) are quasi-completely regular for any positive values of parameters222

k0 and λ in the class of bounded sequences.223
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Fig. 1. Graph of cases A (upper) and B (lower)

On the basis of the Hilbert alternatives [23,24], if the determinants of the corresponding finite224

systems of linear algebraic equations are other than zero, then systems (15) and (18) will have225

unique solutions in the class of bounded sequences. Therefore, by the equivalence of system (15) (or226

(18)) and SIDE (3) the latter has a unique solution.227

4. Exact solution to SIDE (3)228

Case A. Suppose that a plate on a semi-infinite segment is reinforced by an inhomogeneous patch whose229

rigidity changes by the law E(x) = hx2, h = const > 0. The patch is loaded by a tangential force of230

intensity τ0(t, x) = τ0(x)H(t− t0) and the plate is free from external loads (see Fig. 1). We have to define231

the law of distribution of tangential contact stresses τ(t, x) on the line of contact and the asymptotic232

behaviour of these stresses at the end of the patch.233

τ0, τ
′
0 ∈ H([0,∞)), τ0(0) = 0, τ ′

0(x) = O(x−2), x → ∞,

∫ ∞

0

τ0(x) dx = 0.234

To determine the unknown contact stresses we obtain the following integral equation235

(I − L1)
η1(t, x)

hx2
− λ

π
(I − L2)

∫ ∞

0

η′
1(t, y) dy

y − x
− k0(I − L3)η

′′
1 (t, x) = g1(t, x), x > 0,236

η1(t, 0) = 0, η1(t,∞) = 0,237

η1(t, x) =

∫ x

0

[τ(t, y) − τ0(t, y)] dy, g1(t, x) = k0τ
′
0(t, x) +

λ

π

∫ ∞

0

τ0(t, y) dy

y − x
238

g1 ∈ H((0,∞)), g1(t, x) = O(1), x → 0+, g1(t, x) = O(x−2), x → ∞239

η1, η
′
1 ∈ H([0,∞)), η′′

1 ∈ H((0,∞)) (19)240

The change of the variables x = eξ, y = eζ in equation (19) gives241

(I − L1)
ϕ0(t, ξ)

heξ
− λ

π
(I − L2)

∫ ∞

−∞

ϕ′
0(t, ζ) dζ

eζ−ξ − 1
− k0e

−ξ(I − L3)[ϕ
′′
0(t, ξ) − ϕ′

0(t, ξ)]242

= eξg0(t, ξ), |ξ| < ∞ (20)243

where ϕ0(t, ξ) = η1(t, e
ξ), g0(t, ξ) = g1(t, e

ξ), |g0(t, ξ)| ≤ ce−|ξ|, |ξ| → ∞.244
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Subjecting both parts of equation (20) to Fourier’s transformation with respect to ξ [25] and using245

the convolution theorem under condition E1ϕ1(τ) = G0ϕ3(τ), we obtain following boundary condition246

of the Carleman-type problem for a strip247

(I − L1)Φ(t, s + i) +
λhscthπs

1 + k0hs(s + i)
(I − L2)Φ(t, s) =

F (t, s)

1 + k0hs(s + i)
, |s| < ∞ (21)248

where249

Φ(t, s) =
1√
2π

∫ ∞

−∞
ϕ0(t, ξ)e

iξs dξ, F (t, s) =
1√
2π

∫ ∞

−∞
eξg0(t, ξ)e

iξs dξ250

Function F (t, z) is holomorphic on strip −1 < Im z < 1.251

The Carleman-type problem for a strip is formulated as follows:252

Find a function which is analytic on strip −1 < Im z < 1, (with the exception of a finite number of253

points lying on strip −1 < Im z < 0, at which it has poles), continuously extendable on strip boundary,254

vanishes at infinity and satisfies condition (21) [26,27].255

If we find function Φ(t, z) which is holomorphic on strip 0 < Im z < 1, extends continuously on the256

strip boundary and satisfies condition (21), then the solution of the problem is the function257

Φ0(t, z) =

{
Φ(t, z), 0 ≤ Im z < 1
−Φ(t,z+i)+F0(t,z)

G(x) , −1 < Im z < 0
258

where259

G(z) =
λhzcthπz

1 + k0hz(z + i)
, F0(t, z) =

F (t, z)

1 + k0hz(z + i)
260

Representing the function G(s) in the form261

G(s) =
λs

ik0(s2 + 1)

k0h(s2 + 1)cthπsthπ
2 s

1 + k0hs(s + i)

shπ
2 (s + i)

shπ
2 s

=
λs

ik0(s2 + 1)
G0(s)

shπ
2 (s + i)

shπ
2 s

,262

where263

G0(s) =
k0h(s2 + 1)cthπsthπ

2 s

1 + k0hs(s + i)
.264

and remarking that the index of function G0(s) on (−∞,∞) is equal to zero and G0(s) → 1, s → ±∞,265

function lnG0(s) is integrable on the axis and we can write it in the form266

G0(s) =
X0(s + i)

X0(s)
, |s| < ∞, (22)267

where268

X0(z) = exp

{
1

2i

∫ ∞

−∞
lnG0(s)cthπ(s − z) ds

}
.269

Function X0(z) is holomorphic on strip 0 < Im z < 1 and bounded on the closed strip.270

Substituting (22) in condition (21) and introducing the notations271

Ψ(t, z) =
zΦ(t, z)

X1(z)
, λ0 =

k0

λ
, X1(z) = X0(z)X(z)sh

πz

2
,272

X(z) = λiz
0 Γ(2 + iz), F (t, z) =

(z + i)F0(t, z)

X1(z + i)
,273

274

we have275

(I − L1)Ψ(t, s + i) + (I − L2)Ψ(t, s) = F (t, s), |s| < ∞, (23)276

Using Stirling’s formula [22] for the Gamma-function, the following estimate is valid277

|X(z)| = O(|s|3/2−ω)e−π|s|/2, |X1(z)| = O(|δ|3/2−ω), z = s + iω, 0 ≤ ω ≤ 1.278
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_####_ Page 10 of 15 N. Shavlakadze, N. Odishelidze and F. Criado-Aldeanueva ZAMP

Applying the Fourier transformation to (23), we obtain the Volterra’s integral equation of second kind279

[ew(I − L1) + (I − L2)]Φ̂1(t, w) = F̂ (t, w)280

where Φ̂1(t, ω), F̂ (t, ω) are the Fourier transformations of functions Ψ(t, s), F1(t, s), respectively.281

Since function F (t, z) is analytic on strip −1 < Im z < 1 and F (t, z) → 0 uniformly, for |z| → ∞,282

function F̂ (t, w) exponentially vanishes at infinity, i.e. |F̂ (t, w)| < c exp(−|w|), |w| → ∞.283

It is easy to show that integral equation (19) can equivalently be reduced to the following differential284

equation of second order285

¨̂
Φ1(t, w) + γa(t, w)

˙̂
Φ1(t, w) = g(t, w) (24)286

with the initial conditions287

Φ̂1(t0, w) = F̂1(t0, w)(1 + ew)−1,288

˙̂
Φ1(t0, w) =

[
˙̂
F 1(t0, w) − γF̂1(t0, w)(ewϕ1(t0) + ϕ2(t0))(1 + ew)−1

]
(1 + ew)−1

289

290

where291

a(t, w) = 1 + (E1e
wϕ1(t) + E2ϕ2(t))(1 + ew)−1,292

g(t, w) = g0(t, w)(1 + ew)−1,293

g0(t, w) =
¨̂
F 1(t, w) + γ

˙̂
F 1(t, w).294

295

Integrating differential equation (24) and fulfilling the initial conditions, for function Φ̂1(t, w) we obtain296

the expression297

Φ̂1(t, w) = {F̂1(t, w) + F1(t, t0, w)}(1 + ew)−1 (25)298

where299

F1(t, t0, w) = γF̂1(t0, w)(ewϕ1(t0) + ϕ2(t0))(1 + ew)−1

∫ t

τ0

exp(−γb(w, τ, t0) dτ300

−γ

∫ t

τ0

exp(−γb(w, τ, t0) dτ

∫ τ

τ0

(α(q, w) − 1) exp(γb(w, q, t0)
˙̂
F 1(q, w) dq,301

b(w, τ, t0) =

∫ τ

τ0

a(p, w) dp = (τ − t0) + (E1e
wψ1(τ, t0) + E2ψ2(τ, t0))(1 + ew)−1,302

ψ1(τ, t0) =

∫ τ

t0

ϕ1(p) dp, ψ2(τ, t0) =

∫ τ

t0

ϕ2(p) dp303

304

Function Φ̂1(t, w) given by (25) has the same property as function F̂1(t, w) when |w| → ∞.305

By the inverse transformation of equality (25) and using the generalized Parseval’s formula we obtain306

Φ(t, z) =
X1(z)

iz

√
2

π

∫ ∞

−∞

F (t, s)(is + 1) ds

X1(s − i)shπ(s − z)
307

+
X1(z)

iz
γ(ewϕ2(τ0) + ϕ1(τ0))

∫ t

t0

Q1(τ, z) dτ − X1(z)

iz
γ

∫ t

t0

dτ

∫ τ

t0

Q2(τ, q, z) dq (26)308

where309

Q1(τ, z) =

∫ ∞

−∞

exp(−γb(w, τ, τ0)F̂1(τ0, w)e−iwz dw

(1 + ew)2
,310

Q2(τ, q, z) =

∫ ∞

−∞

exp(−γb(w, τ, τ0)(α(q, w) − 1) exp(γb(w, q, τ0)
˙̂
F 1(q, w)e−iwz dw

1 + ew
311

312
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ZAMP The investigation of singular integro-differential equations Page 11 of 15 _####_

Thus functions F (t, z), Q1(τ, z), Q2(τ, q, z) are analytic on strip −1 < Im z < 1 and vanish uniformly313

|Re z| → ∞. The function defined by (26) is holomorphic on strip −1 < Im z < 0, and continuously314

extendable on the strip boundary.315

If function F (t, z) (or F0(t, z)) exponentially vanishes at infinity, then it is easy to prove that function316

Φ(t, z) has the same property. The inverse Fourier’s transformation gives317

τ(t, x) = τ0(t, x) + η′
1(t, x) = τ0(t, x) +

x−1

√
2π

∫ ∞

−∞
isΦ(t, s)e−is ln x ds. (27)318

Taking into account Cauchy’s formula, we get319

τ(t, x) = τ0(t, x) +
ix−1

√
2π

∫ ∞

−∞
(s + i)Φ(t, s + i)e−i(s+i) ln x ds320

= τ0(t, x) +
i√
2π

∫ ∞

−∞
(s + i)Φ(t, s + i)e−is ln x ds.321

322

Consequently, for the tangential contact stresses have323

τ(t, x) = τ0(t, x) +

{
O(1), x → 0+

O(x−1−δ), x → ∞, δ > 0
(28)324

The obtained results can be formulated as325

Theorem 2. If E(x) = h0x
2, x > 0, h0 = const > 0, integro-differential equation (19) has the solution,326

which is represented effectively by (27) and admits estimate (28).327

Conclusion 1. Thus, when the rigidity of half infinite patch changes with parabolic law the tangential328

contact stresses at the thin end of inclusion has no singularities, it is bounded.329

Case B. Suppose that on the finite segment of OX axis, the plate is reinforced by an inhomogeneous330

patch whose rigidity changes by the law E(x) = hx, h = const > 0 (for example, a wedge shaped331

inclusion). The contact between the plate and the patch is achieved by a thin glue layer with rigidity332

k0(x) = k0x, 0 < x < 1, k0 = const > 0.333

The patch is loaded by a horizontal force Pδ(x − 1)H(t − t0) and the plate is free from external loads334

(see Fig. 1).335

To define the unknown contact stresses we obtain the following integral equation336

(I − L1)
η2(t, x)

E(x)
− λ

π
(I − L2)

∫ 1

0

η′
2(t, y) dy

y − x
− (I − L3)(k0(x)η′

2(t, x))′ = 0, 0 < x < 1,337

η2(t, 0) = 0, η2(t, 1) = P, η2(t, x) =

∫ x

0

τ(t, y) dy,338

η2 ∈ H([0, 1)), η′
2 ∈ C((0, 1)), sup

x∈(0,1)

|η′
2(x)| < ∞. (29)339

The change of variables x = eξ, y = eζ in equation (29) gives340

(I − L1)
ψ(t, ξ)

h
+

λ

π
(I − L2)

∫ 0

−∞

ψ′(t, ζ) dζ

1 − e−(ξ−ζ)
− k0(I − L3)ψ

′′(t, ξ) = 0, ξ < 0,341

ψ(t,−∞) = 0, ψ(t, 0) = P, ψ(t, ξ) = η2(t, e
ξ). (30)342

Applying Fourier’s transformation to both parts of equation (30) and using the convolution theorem we343

obtain the following boundary condition of the Riemann problem [25]344

Ψ+(t, s) = (I − L1)Φ
−(t, s) + λhscthπs(I − L2)Φ

−(t, s) + k0hs2(I − L3)Φ
−(t, s) + g01(t, s),345

−∞ < s < ∞, (31)346
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_####_ Page 12 of 15 N. Shavlakadze, N. Odishelidze and F. Criado-Aldeanueva ZAMP

where347

Φ−(t, s) =
1√
2π

∫ 0

−∞
ψ(t, ζ)eisζ dζ, g01(t, s) =

1√
2π

(Piλh(cthπs)− + Pik0hs − k0hψ′(t, 0)),348

Ψ+(t, s) =
h

π

∫ ∞

0

ψ+(t, ζ)eisζ dζ, ψ+(t, ξ) =

{
0, ξ < 0
λ
π

∫ 0

−∞
ψ′(t,ζ) dζ
1−e−(ξ−ζ) − k0ψ

′′(t, ξ), ξ > 0
349

350

Equation (31) under condition351

G0ϕ3(t) = E1ϕ1(t) = E2ϕ2(t)352

takes the form353

Ψ+(t, s) = (1 + πλscthπs + k0hs2)[Φ̈(t, s) + γ(1 + E1ϕ1(t + ρ1))Φ̇(t, s)]− + g01(t, s) (32)354

The problem can be formulated as follows: it is required to obtain function Ψ+(z), holomorphic in355

the Im z > 0 half-plane, which vanishes at infinity, and function Φ−(z) holomorphic in the Im z < 1 half-356

plane (with the exception of a finite number roots of function G1(z)), which vanishes at infinity. Both357

are continuous on the real axis and satisfy condition (32) [25]. Boundary condition (32) is represented in358

the form359

Ψ+(t, s)

s + i
=

G1(s)

1 + s2
[Φ̈(t, s) + γ(1 + E1ϕ1(t + ρ1))Φ̇(t, s)]− · (s − i) +

g01(t, s)

s + i
.360

G1(s) = 1 + λhscthπs + k0hs2,361

G01(s) = (k0h)−1G1(s)(1 + s2)−1, Re G01(s) > 0,362

G01(∞) = G01(−∞) = 1, IndG01(s) = 0. (33)363

Introducing the notation364

[Φ̈(t, s) + γ(1 + E1ϕ1(t + ρ1))Φ̇(t, s)]− = K−(t, s)365

the solution of this problem has the form [28]366

K−(t, z) =
X̃(t, z)

k0h(z − i)
, Im z ≤ 0, Ψ+(t, z) = X̃(t, z)(z + i), Im z > 0,367

K−(t, z) = (Ψ+(t, z) − g01(t, z))G−1
1 (z), 0 < Im z < 1, (34)368

where369

X̃(t, z) = X(z)

{
1

2πi

∫ ∞

−∞

g01(t, y) dy

X+(y)(y + i)(y − z)

}
, X(z) = exp

{
1

2πi

∫ ∞

−∞

lnG01(y) dy

y − z

}
.370

we have the following differential equation371

Φ̈−(t, s) + γ(1 + E1ϕ1(t + ρ1))Φ̇
−(t, s) = K−(t, s) (35)372

with the initial conditions373

Φ−(t0, s) = K−(t0, s), Φ̇−(t0, s) = K−(t0, s)γE1ϕ1(t0 + ρ1)374

Integrating differential equation (35) and fulfilling the initial condition, for function Ψ−(t, s) we obtain375

the expression376

Φ−(t, s) = K−(t, s)(1 + T (t)) (36)377

where378

T (t) = γE1ϕ1(t0 + ρ1)

∫ t

t0

exp(−γb(τ, t0) dτ +

∫ t

t0

[exp(−γb(τ, t0)

∫ τ

t0

exp(γb(p, t0) dp] dτ,379

b(τ, t0) =

∫ τ

t0

α(q) dq, α(q) = 1 + E1ϕ1(q + ρ1)380

381
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ZAMP The investigation of singular integro-differential equations Page 13 of 15 _####_

The boundary value of function Q−(t, z) = P
2
√

2π
−izΦ−(t, z) is the Fourier transform of function Ψ′(t, eζ).382

Therefore, we get383

τ(t, x) = η′
2(t, x) =

1√
2πx

∫ ∞

−∞
Q−(t, s)e−is ln x ds, (37)384

τ(t, x) = O(1), x → 1− (38)385

τ(t, x) = O(xy0−1), x → 0+, y0 > 1/
√

k0h (39)386

Remark 2. If k0h ≤ 1, then τ(t, x) = O(1), x → 0+.387

Remark 3. If k0h = 4, then G1(i/2) = 0 and τ(t, x) = O(x−1/2), x → 0+.388

Thus, the following theorem is proven:389

Theorem 3. Integro-differential equation (29) has the solution, which is represented effectively by formula390

(37) and admits estimates (38), (39).391

5. Discussion and numerical results392

Asymptotic estimates for the solution to integro-differential equation (2) are obtained. A method of393

reduction for infinite regular systems of linear algebraic equations is justified. For any law of variation of394

the stiffness of the patch, tangential contact stresses have finite values at the ends of patches.395

To obtain numerical results, specific values of the aging functions of the plane, patch and glue are396

considered in the form397

ϕ1(t) = 0.0098ϕ3(t)398

ϕ2(t) = 0.00123ϕ3(t)399

ϕ3(t) = 0.09 · 10−10 +
4.82 · 10−10

t
400

401

The numerical values of the remaining parameters of the problem are taken as follows:402

E1 = 120 · 109MPa, ν1 = 0.5, E2 = 95 · 109MPa, ν2 = 0.3,403

G
(1)
0 = 0.117 · 109MPa, (G

(2)
0 = 11.7 · 109MPa), h0 = 5 · 10−4m, h1(x) = h1 = 5 · 10−2m,404

γ = 0.026 day−1, q
(1)
0 (x) = 105

√
1 − x2 N, (q

(2)
0 (x) = 107

√
1 − x2 N), ρi = 0 (i = 1, 2, 3),405

t0 = 45days, t(1) = 2.5 · 103 days, (t(2) = 9 · 103days)406
407

The shortened finite systems of linear equations corresponding to systems (15) and (18), consisting of408

10 and 12 equations have been solved. The results of the calculation show that an increase in the number409

of equations in the systems led to a change only in the seventh decimal place in the solutions.410

Increasing the shear modulus of the glue causes the increase of the sought contact stresses, and the411

increase of the time value is corresponded by a decrease of the values of these stresses.412

For comparison, the following should be noted: in contrast to a number of works in which a rigid contact413

between two interacting materials is considered and where unknown contact stresses have singularities414

at the ends of the contact line (i.e. stress concentrations arise), in this work, the contact between two415

bodies with viscoelastic (creep) properties is carried out using a thin layer of glue and, therefore, the416

found contact stresses at the ends of the contact line turned out to be limited (finite).417

Obviously, the absence of stress concentration in the deformable body is extremely important from a418

engineering point of view.419
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