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Exact solutions of some singular integro-differential equations related to adhesive con-1

tact problems of elasticity theory2

Nugzar Shavlakadze, Nana Odishelidze and Francisco Criado-Aldeanueva3

Abstract. The problem of constructing an exact solution of singular integro-differential equations related to problems of4

adhesive interaction between elastic thin semi-infinite homogeneous patch and elastic plate is investigated. For the patch 15

loaded with horizontal forces the usual model of the uniaxial stress state is valid. Using the methods of the theory of analytic 26

functions and integral transformation, the singular integro-differential equation is reduced to the Riemann boundary value7

problem of the theory of analytic functions. The exact solution of this problem and asymptotic estimates of tangential 38

contact stresses are obtained.9

Mathematics Subject Classification. 74B05, 74K20, 74K15.10

Keywords. Adhesive contact problem, Elastic patch, Integro-differential equation, Integral transformation, Riemann problem.11

1. Introduction12

Exact or approximate solutions of static contact problems for different domains, reinforced by elastic thin13

inclusions and patches of variable stiffness were obtained, and the behavior of the contact stresses at the14

ends of the contact line has been investigated as a function of the geometrical and physical parameters15

of these elements [1–7,14–24]. One model assumes continuous interaction, while the other assumes the16

adhesive contact of thin-shared elements (stringers or inclusions) with massive deformable bodies. In17

[11], a finite-length stringer is attached to a thin elastic sheet subjected to plane stress. The two different18

materials are joined along the entire stringer length by a thin uniform elastic adhesive layer assumed to19

be in pure shear state. The bending is neglected and the interaction between the sheet and the stringer20

is idealized as a line loading of the sheet. In [9], an elastic semi-infinite plate is strengthened by an elastic21

finite stringer. The contact between the plate and the stringer is achieved by a thin glue layer. Asymptotic22

estimates, exact and approximate solutions of the associated integro-differential equation are obtained.23

In the present paper, the exact solution of singular integro-differential equations related to the prob-24

lems of adhesive interaction between an elastic thin semi-infinite homogeneous patch and an elastic plate25

is obtained. From the physical point of view, consideration of the case of the adhesive interaction between26

the plate and the stringer is interesting since the boundedness of the unknown tangential contact stress27

near the ends of the stringer is proved by rigorous mathematical methods. The limit transition (case A)28

corresponds to the case of rigid contact, in which the obtained solution, i.e. tangential contact stress, has29

a singularity at the end of the stringer.30

2. Formulation of the problem and reduction to the integro-differential equation31

Let a semi-infinite patch with modulus of elasticity E1(x), thickness h1(x) and Poisson’s coefficient ν1 be32

attached to the plate (E2, ν2), which is in the condition of a plane deformation. It is assumed that the33
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horizontal stresses with intensity τ0(x) act on the patch along the ox-axis. In the horizontal direction,34

the patch is compressed or stretched like a rod being in uniaxial stress state. The contact between the35

plate and patch is achieved by a thin glue layer with width h0 and Lame’s constants λ0, µ0.36

The adhesive contact condition has the form [11]37

u1(x) − u2(x, 0) = k0τ(x), x > 0 (1)38

where u2(x, y) and u1(x) are displacements of the plate points and displacements of the patch points,39

respectively. τ(x) is unknown tangential contact stresses and k0 = h0/µ0.40

We have to define the law of distribution of tangential contact stresses τ(x) on the line of contact, the41

asymptotic behavior of these stresses at the end of the patches.42

According to the equilibrium equation of patch elements and Hooke’s law, we have:43

du1(x)

dx
=

1

E(x)

x∫

0

[τ(t) − τ0(t)]dt, x > 0, (2)44

and the equilibrium equation of the patch has the form45

∞∫

0

[τ(t) − τ0(t)]dt = 0,46

E(x) =
E1(x)h1(x)

1 − ν2
1

(3)47

According to known results for plate [12], the horizontal deformation of the points of the OX axis has48

the form49

du2(x, 0)

dx
=

b

π

∞∫

0

τ(t)dt

t − x
(4)50

where51

b =
2(1 − ν2

2)

E2
52

Introducing the notation53

g(x) =

x∫

0

[τ(t) − τ0(t)]dt,54

from (1), (2) and (4) we obtain the following integro-differential equation55

g(x)

E(x)
− b

π

∞∫

0

g′(t) dt

t − x
− k0g

′′(x) = f(x), x > 0 (5)56

where57

f(x) =
b

π

∞∫

0

τ0(t) dt

t − x
+ k0τ

′
0(x)58

with the condition59

g(∞) = 0 (6)60

Thus, the above posed boundary contact problem is reduced to the singular integro-differential equation61

(5) with the condition (6).62
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ZAMP Exact solutions of some singular integro-differential equations Page 3 of 9 _####_

The solutions of Eq. (5) under the condition (6) can be sought in the class of functions: g, g′ ∈ H[0,∞),63

g′′ ∈ H(0,∞) [13].64

We assume that the function τ0(x) is continuous in the Holder’s sense and τ0(x) has a first-order65

continuous derivative.66

3. Exact solution of singular integro-differential equations67

Suppose that a plate on a semi-infinite interval is reinforced with a homogeneous patch and is free of68

external loads. The contact between the plate and the patch is carried out through a thin layer of glue.69

The problem means determination of contact stresses when a horizontal force T applies at one end of70

the patch (at a point x = 0). E(x) = E0 = const.71

Equation (5) and the boundary conditions (6) take the form72

ϕ(x) − λ

π

∞∫

0

ϕ′(t)dt

t − x
− kϕ′′(x) = 0, x > 0 (7)73

ϕ(0) = T, ϕ(∞) = 0, (8)74

where75

ϕ(x) = T −
x∫

0

τ(t)dt, λ = bE0, k = k0E0.76

The solution of Eq. (7) is sought in the class of functions ϕ, ϕ′ ∈ H[0,∞), ϕ′′ ∈ H(0,∞).77

By a generalized Fourier transform with the convolution theorem [8], from (7), (8) we arrive at a78

Riemann problem79

Φ+(s)
[
1 + λ|s| + ks2

]
= F−(s) − iλT sgns − kϕ′(0) + iksT, (9)80

where Φ+(s) and F−(s) are Fourier transforms of functions81

ϕ0(x) =

{
ϕ(x), x ≥ 0

0, x < 0
and f(x) =

⎧
⎨
⎩

0, x ≥ 0

λ
π

∞∫
−∞

ϕ′

0
(t)dt

t−x − kϕ′′
0(x), x < 0

82

4. Case A83

(a) For k ≥ 0, the coefficient of the problem (9) can be represented in the form84

1 + λ|s| + ks2 =
1 + λ|s| + ks2

√
1 + λ2s2

√
1 + k̃2s2

√
λs + i

√
λs − i

√
k̃s + i

√
k̃s − i, k̃ =

k

λ
85

and we consider the canonical solution of the problem of linear conjugation86

X+(s) =
1 + λ|s| + ks2

√
1 + λ2s2

√
1 + k̃2s2

X−(s) (10)87

Everywhere, we mean by functions of type
√

λz + i and
√

λz − i the branches that are analytic in88

planes with cuts along the rays, drawn from the points z = −i/λ and z = i/λ, respectively, in the OX89

direction, and which take positive and negative values, respectively, on the upper side of the cut. With90

this choice of branches, the function
√

1 + λ2z2 is analytic in the strip −1/λ < ℑz < 1/λ and takes a91

positive value on the real axis.92
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_####_ Page 4 of 9 N. Shavlakadze, N. Odishelidze and F. Criado-Aldeanueva ZAMP

The function93

X(z) = exp

⎧
⎨
⎩

1

2πi

∞∫

−∞

ln
1 + λ|s| + ks2

√
1 + λ2s2

√
1 + k̃2s2

ds

s − z

⎫
⎬
⎭94

satisfies the boundary condition (10), does not vanish anywhere and X±(∞) = 1.95

Representing the boundary condition (9) in the form96

Φ+(s)

√
(λs + i)(k̃s + i)X+(s)97

=
F−(s)X−(s)√
(λs − i)(k̃s − i)

+
(−iλT sgns − kϕ′(0) + ikTs)X−(s)√

(λs − i)(k̃s − i)
98

we get99

Φ(z)

√
(λz + i)(k̃z + i)X(z)100

= −λT

2π

∞∫

−∞

X−(s)sgns√
(λs − i)(k̃s − i)

ds

s − z
− kϕ′(0)

2πi

∞∫

−∞

X−(s)√
(λs − i)(k̃s − i)

ds

s − z
101

+
kT

2π

∞∫

−∞

sX−(s)√
(λs − i)(k̃s − i)

ds

s − z
102

and based on the well-known Cauchy formula103

Φ(z) =
−λT

πX(z)

√
(λz + i)(k̃z + i)

∞∫

0

X−(s)√
(λs − i)(k̃s − i)

ds

s − z
104

+
i
√

kT

2X(z)

√
(λz + i)(k̃z + i)

, Imz > 0105

The boundary value of function K(z) = −T − izΦ(z) is Fourier transform of function ϕ′(x).106

We investigate the behavior at infinity of the following function:107

K(z) = −T − λTz

πiX(z)

√
(λz + i)(k̃z + i)

∞∫

0

X−(s)ds√
(λs − i)(k̃s − i)(s − z)

108

+
z
√

kT

2X(z)

√
(λz + i)(k̃z + i)

(11)109

Introducing the notations110

K1(z) =
λTz

πiX(z)

√
(λz + i)(k̃z + i)

∞∫

0

X−(s) ds√
(λs − i)(k̃s − i)(s − z)

,111

K2(z) =
z
√

kT

2X(z)

√
(λz + i)(k̃z + i)

112
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and the change of variable z = −1/ξ, s = −1/t0 for function K1(z) gives113

K∗
1 (ξ) =

−λTξ

πiX∗(ξ)

√
(λ − iξ)(k̃ − iξ)

0∫

−∞

X−∗(t0) dt0√
(λ + it0)(k̃ + it0)(t0 − ξ)

, (12)114

where K∗
1 (ξ) = K1(z), X∗(ξ) = X(z). By virtue of known results [13], K∗

1 (ξ) = O(ξlnξ), ξ → 0 and,115

respectively, K1(z) = O(|z|−(1−ǫ)), |z| → ∞ (ǫ arbitrarily small positive number).116

Since K2(∞) = T/2, , the function K̃+
1 (z) = K(z) + T/2 is holomorphic in half-plate Imz > 0 and117

vanishes at infinity as |z|−(1−ǫ), |z| → ∞.118

Consequently, unknown tangential contact stresses are determined by the formula119

τ(x) = ϕ′(x) =
1

2π

∞∫

−∞

K̃1(t)e
−itx dt, (13)120

and it is bounded, when x → 0+.121

By limiting transition k → 0 from (12), we have122

K∗
1 (ξ) =

λT
√

ξ

πiX∗(ξ)
√

λ − iξ

0∫

−∞

X−∗(t0)dt0√
t0(λ + it0)(t0 − ξ)

,123

K∗
1 (ξ) = −T + O(ξ1/2−δ), 0 < δ < 1/2, ξ → 0,124

K1(z) + T = O(|z|−(1/2+δ)), |z| → ∞, K2(z) = 0.125

The tangential contact stresses are determined by the formula126

τ(x) = ϕ′(x) =
1

2π

∞∫

−∞

K̃2(t)e
−itxdt127

where the function K̃+
2 (z) = K(z) + 2T is holomorphic in half-plate Imz > 0 and vanishes at infinity as128

|z|−(1/2+δ), |z| → ∞.129

Therefore, tangential contact stresses τ(x), when x → 0+, has a singularity less than 1/2. This result130

matches to results from [10,16,18].131

5. Case B132

(b) Let k > k1 > 0, then the solution of problem (9) can be represented in another form. The coefficient133

of the problem can be written in the form134

1 + λ|s| + ks2 =
1 + λ|s| + ks2

1 + ks2
(1 − i

√
ks)(1 + i

√
ks)135

and the canonical solution of the problem of linear conjugation136

X+(s) =
1 + λ|s| + ks2

1 + ks2
X−(s)137

has the form138

X(z) = exp

⎧
⎨
⎩

1

2πi

∞∫

−∞

ln
1 + λ|s| + ks2

1 + ks2

ds

s − z

⎫
⎬
⎭ .139

The function X(z) does not vanish anywhere and X±(∞) = 1.140
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Representing the boundary condition (9) in the form141

Φ+(s)(1 − i
√

ks)X+(s) =
F−(s)X−(s)

1 + i
√

ks
− iλT sgns + kϕ′(0) − ikTs√

1 + i
√

ks
142

we get143

Φ(z)(1 − i
√

kz)X(z) = −λT

2π

∞∫

−∞

X−(s)sgns

1 + i
√

ks

ds

s − z
144

−kϕ′(0)

2πi

∞∫

−∞

X−(s)

1 + i
√

ks

ds

s − z
+

kT

2π

∞∫

−∞

sX−(s)

1 + i
√

ks

ds

s − z
145

and based on the well-known Cauchy formula146

Φ(z) = − λT

πX(z)(1 − i
√

kz)

∞∫

0

X−(s)

1 + i
√

ks

ds

s − z
+

√
kT

2X(z)(1 − i
√

kz)
, Imz > 0147

The boundary value of function K◦(z) = −T − izΦ(z) is Fourier transform of function ϕ′(x).148

We investigate the behavior of the function149

K0(z) = −T +
iλTz

πX(z)(1 − i
√

kz)

∞∫

0

X−(s)ds

(1 + i
√

ks)(s − z)
− iz

√
kT

2X(z)(1 − i
√

kz)
150

at infinity. Introducing the notations K0
1 (z) = iλTz

πX(z)(1−i
√

kz)

∞∫
0

X−(s)ds

(1+i
√

ks)(s−z)
, K0

2 (z) = −iz
√

kT
2X(z)(1−i

√
kz)

, and151

the change of variable z = −1/ξ, s = −1/t0 in function K0
1 (z) gives152

K0∗
1 (ξ) =

λTξ

πX∗(ξ)(ξ + i
√

k)

0∫

−∞

X−∗(t0)dt0

(t0 − i
√

k)(ξ − t0)
,153

where K∗
1 (ξ) = K1(z), X∗(ξ) = X(z).154

It is obvious that K0∗
1 (ξ) = O(ξlnξ), ξ → 0 and K0

1 (z) = O(|z|−(1−ǫ))) |z| → ∞, K0
2 (∞) = T

2 (ǫ155

arbitrarily small positive number).156

Consequently, unknown contact stresses are determined by the formula157

τ(x) = ϕ′(x) =
1

2π

∞∫

−∞

K̃3(t)e
−itxdt, (14)158

where the function K̃+
3 (z) = K0(z) + T/2 is holomorphic in half-plate Imz > 0 and vanishes at infinity159

as |z|−(1−ǫ), |z| → ∞. Therefore, tangential contact stresses, defined by formula (14), are bounded when160

x → 0+.161

Thus, it is proved the following theorem162

Theorem 1. Integro-differential equation (7)–(8) has the solution, which is represented effectively by for-163

mulas (13)–(14) and ϕ′(x) = O(1), x → 0+.164

In Table 1 and Fig. 1, the dependence of the tangential contact stress τ(x) at the point x = 0165

with the value of k is presented for the following physical and geometric parameters of the problem:4 166

module of elasticity E2 = 95 · 109 Pa and Poisson’s coefficient ν2 = 0.3 of semi-plate material; module of167

elasticity E1 = 120 ·109 Pa and Poisson’s coefficient ν1 = 0.5 of stringer material and thickness of stringer168

h1 = 5 · 10−2 m; in the table value of number k = h0E0/µ0 is defined for various values of h0, µ0, for169
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ZAMP Exact solutions of some singular integro-differential equations Page 7 of 9 _####_

Table 1. Dependence of tangential contact stress τ(x) at x = 0 with the value of k

k (m) τ(0) (N/Dm2)

3.42 · 10−2 1.5138
1.52 · 10−2 1.6279
0.55 · 10−2 2.5806
0.25 · 10−2 3.5236
1.42 · 10−3 6.9176
0.55 · 10−3 20.864
0.25 · 10−3 35.768
1.0 · 10−4 42.616
0.7 · 10−4 46.568
1.0 · 10−5 56.545
0.5 · 10−5 58.325

0 1 2 3

·10
−2

0

20

40

60

K

τ

Fig. 1. Dependence of tangential contact stress τ(x) at x = 0 with the value of k

example, we obtain k = 3.42 · 10−2 m in case of shear module µ0 = 0.117 · 109 Pa and thickness of glue170

layer h0 = 5 · 10−4 m.171

Calculations show that a decrease of thickness or an increase of the shear modulus of the adhesive172

material, i.e. a decrease of the number k, corresponds to tend to the rigid contact of the stringer with173

the plate, at which the tangential contact stress tends to infinity at the endpoints of the stringer.174

6. Conclusion175

In this paper, the well-known method of Wiener–Hopf is used for solving a Riemann problem. We made176

the factorizations for specific coefficients related to the investigated integro-differential equation, whose177

effective solutions and the asymptotic estimates are obtained.178

The case k = 0 corresponds to the absolute rigid contact between the elastic plate and patch. k → 0179

means that adhesive contact tends to rigid contact between the elastic plate and patch. In case B, the180

integro differential equation is considered for k > k1 > 0. The corresponding factorization of the coefficient181

of the Riemann problem was carried out, and the exact solution and asymptotic estimates were obtained.182
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_####_ Page 8 of 9 N. Shavlakadze, N. Odishelidze and F. Criado-Aldeanueva ZAMP

In case A, the same integro-differential equation is considered for k ≥ 0. Here, the other factorization183

of the coefficient is carried out to make a limit transition (k → 0) and to compare the result with the184

known results from [10,16,18].185

The mechanical result of this study is the following: in condition of the rigid contact (k = 0) between186

elastic plate and patch, the tangential contact stresses at the end (in point x = 0) of elastic patch have187

a singularity less than 1/2; the tangential contact stresses are bounded in case of the adhesive contact188

among them (k �= 0).189

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps190

and institutional affiliations.191
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