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Abstract
A piecewise-homogeneous elastic orthotropic plate, reinforced with a finite patch of the wedge-shaped, which meets the
interface at a right angle and is loaded with tangential and normal forces is considered. Using methods of the theory of
analytic functions, the problem is reduced to the system of singular integro-differential equations (SIDE) with fixed singu-
larity. Under tension-compression of patch using an integral transformation a Riemann problem is obtained, the solution
of which is presented in explicit form. The tangential contact stresses along the contact line are determined and their
asymptotic behavior in the neighborhood of singular points is established.

Keywords
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1. Introduction

The solutions of static contact problems for different domains, reinforced with elastic thin inclusions
and patches of variable stiffness and the behavior of the contact stresses at the ends of the contact line,
have been investigated as a function of the law of variation of the geometrical and physical parameters
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of these thin-walled elements [1–13]. The first fundamental problem for a piecewise-homogeneous plane,
when a crack of finite length arrives at the interface of two bodies at the right angle, was solved in
Khrapkov [14]; a similar problem for a piecewise-homogeneous plane when acted upon by symmetrical
normal stresses at the crack sides was solved in Bantsuri [15] and Ungiadze [16], as well as the contact
problems for a piecewise-homogeneous plane with a semi-infinite and finite inclusion were solved in
Bantsuri and Shavlakadze [17], Shavlakadze et al. [18], and Shavlakadze et al. [19].[AQ: 2]

2. Problem statement and its reduction to the system of SIDE

It is considered a piecewise-homogeneous orthotropic plate in the condition of plane deformation,
which consists of two half-planes of dissimilar materials and reinforced with a finite or half infinite
patch (inclusion) with modulus of elasticity E1(x), thickness h1(x), and Poisson’s coefficient n1. It is
assumed that the horizontal and vertical stresses with intensity t0(x) and p0(x) act on the patch along
the OX -axis (the functions t0(x) and p0(x) are bounded functions on the finite interval) (Figure 1).

The patch in the vertical direction bends like a beam (it has a finite bending stiffness) and also in the
horizontal direction the patch is compressed or stretched like a rod being in uniaxial stress state.

The contact between the plate and patch is performed by a thin glue layer with width h0 and Lame’s
constants l0, m0. The contact conditions for the sandwich components have the form [20]

u1(x)� u(1)(x, 0) = k0t(x), v1(x)� v(1)(x, 0) = m0p(x), 0\x\1 ð1Þ

where u(1)(x, y), v(1)(x, y) are displacement components of the plate points and u1(x), v1(x) displacements
of the patch points along the OX -axis:

k0 := h0=m0, m0 := h0=(l0 + 2m0)

We have to define the law of distribution of tangential and normal contact stresses t(x) and p(x) on
the contact line and the asymptotic behavior of these stresses at the ends of the patches.

According to the equilibrium equation of patch element and Hooke’s law, one obtains:

d u1(x)

dx
=

1

E(x)

ðx

0

½t(t)� t0(t)�dt,

d2

dx2
D(x)

d2 v1(x)

dx2
= p0(x)� p(x), 0\x\1

ð2Þ

and the equilibrium equation of the patch has the form

ð1

0

½t(t)� t0(t)�dt = 0,

ð1

0

½p(t)� p0(t)�dt = 0,

ð1

0

t ½p(t)� p0(t)�dt = 0,

Figure 1. Problem statement. Graphical sketch.
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where

E(x) =
E1(x)h1(x)

1� n2
1

, D(x) =
E1(x)h3

1(x)

1� n2
1

:

Suppose an elastic body S occupies the plate of complex variable z = x + iy, which contains an elastic
patch along the segment l1 = (0, 1) and consists of two half-planes of dissimilar materials

S(1) = fzjRe z . 0, z 62 0, 1�g, S(2) = fzjRe z\0g

joined along the OY axis. Quantities and functions, referred to the half-plane S(k), will be denoted by the
index k (k = 1, 2), while the boundary values of the other functions on the upper and lower sides of the
patch will be denoted by a plus or minus sign, respectively. We will assume that the left and right half-
planes are homogeneous and the principal directions of elasticity coincide with the coordinate axes.

At the interface of the two materials, we have the continuity conditions

s(1)
x = s(2)

x , t(1)
xy = t(2)

xy , u(1) = u(2), v(1) = v(2)

where s(k)
x , t(k)

xy are the stress components and u(k), v(k) are the displacement components (k = 1, 2).
The boundary conditions of the components of the stress and displacement fields in the half-plane S(1)

have the form

s(1) +
y � s(1)�

y = p(x), t(1) +
xy � t(1)�

xy = t(x),

u(1) + = u(1)�, v(1) + = v(1)�,
0\x\1: ð3Þ

Using Lekhnitskii’s formulae [21], the components of stress and displacement are represented in the
form

s(k)
x = � 2Re ½b2

kFk(zk) + g2
kCk(zk)� s(k)

y = 2Re ½Fk(zk) + Ck(zk)�
t(k)

xy = 2Im= 2Im ½bkFk(zk) + gkCk(zk)�
u(k) = 2Re ½rkuk(zk) + rkck(zk)� v(k) = � 2Im ½bkrkuk(zk) + gkrkck(zk)�
zk = x + ibky, zk = x + igky, Fk(zk) = u0k(zk), Ck(zk) = c0k(zk), k = 1, 2

here 6ibk, 6igk are the roots of the characteristic equation

m4 +
Ek

Gk

� 2nk

� �
m2 +

Ek

E�k
= 0, (bk . gk):

(Ek ,E
�
k) are Young’s modulus with respect to the principal (OX ,OY ) directions, respectively, Gk are the

shear modulus, and nk are Poisson’s ratios.
The problem with conditions 1–3 is reduced to the problem of finding of functions Fk(zk) Ck(zk),

(k = 1, 2) which are holomorphic in the regions S(k), respectively, and satisfy the following boundary
conditions:

2Re ½F+
1 (x)�F�1 (x) + C+

1 (x)�C�1 (x)�= p(x)

2Im ½b1(F+
1 (x)�F�1 (x)) + g1(C+

1 (x)�C�1 (x)�= t(x)

Re ½r1(F+
1 (x)�F�1 (x)) + r1(C+

1 (x)�C�1 (x))�= 0

Im ½b1r1(F+
1 (x)�F�1 (x)) + g1r1(C+

1 (x)�C�1 (x))�= 0

0\x\1 ð4Þ
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Re ½b2
1F1(t1) + g2

1C1(s1)�= Re ½b2
2F2(t2) + g2

2C2(s2)�
Im ½b1F1(t1) + g1C1(s1)�= Im ½b2F2(t2) + g2C2(s2)�

Im ½r1b1F1(t1) + r1g1C1(s1)�= Im ½r2b2F2(t2) + r2g2C2(s2)�
Re ½b2

1r1F1(t1) + g2
1r1C1(s1)�= Re ½b2

2r2F2(t2) + g2
2r2C2(s2)�

ð5Þ

where tk = ibky, sk = igky, rk =�(b2
k + nk)=Ek , rk =�(g2

k + nk)=Ek , k = 1, 2.
System (4) has the unique solution:

F+
1 (x)�F�1 (x) =

�r1b1p(x) + ir1t(x)

2b1(r1 � r1)

C+
1 (x)�C�1 (x) =

r1g1p(x)� ir1t(x)

2g1(r1 � r1)

0\x\1 ð6Þ

In view of the fact that t(x) = 0, p(x) = 0 when x . 1, the general solution of problem (6) can be repre-
sented in the form [22]

F1(z1) =
ir1

4p(r1 � r1)

ð1

0

N1(t)dt

t � z1

+ w1(z1) [ ir1w0(z1) + w1(z1),

C1(z1) = � ir1

4p(r1 � r1)

ð1

0

N2(t)dt

t � z1

+ w2(z1) [ � ir1w0(z1) + w2(z1),

N1(t) = p(t)� i
r1

r1b1

t(t), N2(t) = p(t)� i
r1

r1g1

t(t),

ð7Þ

where w1(z1) and w2(z1) are unknown analytic functions in the half-planes Re z1 . 0, Re z1 . 0, respec-
tively, which will be defined using the conditions (5).

Let us substitute the boundary values of functions F1(z1) and C1(z1), expressed by formulae (7), into
equalities (5) and then the obtained expressions are multiplied by 1

2pi
dt

t�z
, t = iy, z = x + iy, x . 0 and inte-

grated along the imaginary axis. It is known that if F(z) is a holomorphic function in the half-plane

Im z . 0 (Im z\0), then F(iy) is the boundary value of the function F(�z), which is holomorphic in the
half-plane Im z\0 (Im z . 0). As a result, using Cauchy’s theorem and formula, we obtain the system:

b2
1w1(b1z) + g2

1w2(g1z)� b2
2F2(�b2z)� g2

2C2(�g2z) = � ir1b2
1w0(�b1z) + ir1g2

1w0(�g1z)

b1w1(b1z) + g1w2(g1z) + b2F2(�b2z) + g2C2(�g2z) = ir1b1w0(�b1z)� ir1g1w0(�g1z)

r1b1w1(b1z) + r1g1w2(g1z) + r2b2F2(�b2z) + g2r2C2(�g2z) = ir1r1b1w0(�b1z)� ir1r1g1w0(�g1z)

b2
1r1w1(b1z) + g2

1r1w2(g1z)� b2
2r2F2(�b2z)� g2

2r2C2(�g2z) = � ir2
1b2

1w0(�b1z) + ir2
1g2

1w0(�g1z)

Solving this system for functions w1(b1z) and w2(g1z), and replacing z by z1=b1 and z1=g1, respec-
tively, one obtains

w1(z1) =
iI1

D
w0(�z1) +

iI2

D
w0 �

g1

b1

z1

� �
, w2(z1) =

iI�1
D

w0 �
b1

g1

z1

� �
+

iI�2
D

w0(�z1) ð8Þ

for functions F2(�b2z) and C2(�g2z) with this notation �b2z = z2, �g2z = z2, we have

F2(z2) =� iI3

D
w0

b1

b2

z2

� �
� iI4

D
w0

g1

b2

z2

� �
,

C2(z2) =� iI�3
D

w0

b1

g2

z2

� �
� iI�4

D
w0

g1

g2

z2

� �
,

where
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I1 = � D11r1b2
1 + D21r1b1 + D31r1r1b1 � D41b2

1r2
1, I3 = � D13r1b2

1 + D23r1b1 + D33r1r1b1 � D43b2
1r2

1

I2 = D11r1g2
1 � D21r1g1 � D31r1r1g1 + D41r2

1g2
1, I4 = D13r1g2

1 � D23r1g1 � D33r1r1g1 + D43r2
1g2

1

I�1 = � D12r1b2
1 + D22r1b1 + D32r1r1b1 � D42b2

1r2
1, I�3 = � D14r1b2

1 + D24r1b1 + D34r1r1b1 � D44b2
1r2

1

I�2 = D12r1g2
1 � D22r1g1 � D32r1r1g1 + D42r2

1g2
1, I�4 = D14r1g2

1 � D24r1g1 � D34r1r1g1 + D44r2
1g2

1

D =

b2
1 g2

1 �b2
2 �g2

2

b1 g1 b2 g2

r1b1 r1g1 r2b2 r2g2

b2
1r1 g2

1r1 �b2
2r2 �g2

2r2

��������

��������
Dij (i, j = 1, 2, 3, 4) are the cofactors of the corresponding matrix elements.
Boundary condition (2) when 0\x\1 is equivalent to the relations:

1

E(x)

ðx

0

½t1(t)� t0
1(t)�dt � ½r1F1(x) + r1F1(x) + r1C1(x) + r1C1(x)�= k0t0(x)

1

D(x)

ðx

0

dt

ðt

0

½p0
1(t)� p1(t)�dt � i

d

dx
½b1r1F1(x)� b1r1F1(x) + g1r1C1(x)� g1r1C1(x)�= m0p001(x)

ð9Þ

Substituting expressions (7) and (8) into (9), one obtains

c(x)

E(x)
� 1

2p

ð1

0

Q(t, x)c0(t)dt � k0c00(x) = f1(x),

u(x)

D(x)
+

1

2p

d

dx

ð1

0

R(t, x)u00(t)dt + m0u
IV (x) = f2(x),

c(1) = 0, u(1) = 0, u0(1) = 0

ð10Þ

where

Q(t, x) =
l1

t � x
+

l2

t + x
+

l3

b1t + g1x
+

l4

g1t + b1x

R(t, x) =
k1

t � x
+

k2

t + x
+

k3

b1t + g1x
+

k4

g1t + b1x

c(x) =

ðt

0

½t(t)� t0(t)�dt, u(x) =

ðx

0

dt

ðt

0

½p0(t)� p(t)�dt,

f1(x) =
1

2p

ð1

0

Q(t, x)t0(t)dt + k0

d

dx
t0(x), f2(x) = m0

d2

dx2
p0(x) +

1

2p

d

dx

ð1

0

R(t, x)p0(t)dt

l1 =
r2

1g1 � r2
1b1

(r1 � r1)b1g1

, l2 =
r2

1g1I1 + r2
1b1I�2

Db1g1(r1 � r1)
,l3 =

�I2r2
1

Dr1(r1 � r1)
, l4 =

�I�1 r2
1

Dr1(r1 � r1)

k1 =
b1r2

1 + g1r2
1

r1 � r1

, k2 =
b1r1I1 + g1r1I�2

D(r1 � r1)
, k3 =

b2
1r1I2

D(r1 � r1)
, k4 =

g2
1r1I�1

D(r1 � r1)

3. Exact solution of equation (10)

Let the patch be loaded by a tangential force Pd(x� 1) and the plate be free from external loads. (d(x)
is Dirac function.) Stiffness of the patch and glue varies linearly, i.e., E(x) = hx, k0(x) = k0x, 0\x\1
(Figure 2). Equation (10) and the corresponding boundary conditions take the form
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c(x)

E(x)
� 1

2p

ð1

0

Q(t, x)c0(t)dt � (k0(x)c0(x))0= 0; 0\x\1

c(1) = P, c(x) =

ðx

0

t(t)dt

ð11Þ

The solution of equation (11) is sought in the class of functions

c,c0 2 H(½0, 1�), c00 2 H((0, 1))

The change of variables x = ej, t = ez in equation (11) gives

c0(j)

h
� 1

2p

ð0

�‘

Q(ez�j, 1)c00(z)dz � k0c000(j) = 0, j\0,

c0(�‘) = 0,c0(0) = P,c0(j) = c(ej)

Subjecting both parts of this equation to generalized Fourier transform [23], one obtains the following
condition of Riemann boundary value problem

F+(s) = G(s)C�(s) + g(s), � ‘\s\‘, ð12Þ

where

G(s) = 1 +
hl1s

2
cthps� hl2s

2shps
� hl3seims

2shps
� hl4se�ims

2shps
+ k0hs2, m = ln

b1

g1

C�(s) =
1ffiffiffiffiffiffi
2p
p

ð0

�‘

c�0 (z)eisz dz,

ffiffiffiffiffiffi
2p
p

g(s) =
Pi

2
l1hcthps� l2h

shps
� l3heims

shps
� l4he�ims

shps

� �
�

+ Pik0hs� k0hc00(0)

u+(j) =

0, j\0

� h

2p

ð0

�‘

Q(ez�j, 1)c00(z)dz � hk0c000(j), j . 0

8><
>: ,

F+(s) =
1ffiffiffiffiffiffi
2p
p

ð‘

0

u+(z)eisz dz

By virtue of functions C�(s), F+(s) definition, they will be boundary values of the functions which
are holomorphic in the lower and upper half-planes, respectively.

The problem can be formulated as follows: it should be determined by the functions F+(z), holo-
morphic in the half-plane Im z . 0 and the function C�(z), holomorphic in the half-plane Im z\1 (with
the exception of a finite number of zeros of function G(z)), which are vanishing at infinity and are con-
tinuous on the real axis by condition (12).

Condition (12) can be represented as

F+(s)

s + i
=

G(s)

1 + s2
C�(s)(s� i) +

g(s)

s + i
ð13Þ

Introducing the notation G0(s) = (k0h)�1G(s)(1 + s2)�1, it can be shown that Re G0(s) . 0,
G0(‘) = G0(�‘) = 1, therefore IndG0(s) = 0.
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The unique solution of problem (13) has the form [22]

C�(z) =
~X (z)

k0h(z� i)
, Im z ł 0; F+(z) = ~X (z)(z + i), Im z . 0,

C�(z) = (F+(z)� g(z))G�1(z), 0\Im z\1,

ð14Þ

where

~X (z) =
X (z)

2pi

ð‘

�‘

g(t)

X +(t)(t + i)(t � z)
dt, X (z) = exp

1

2pi

ð‘

�‘

lnG0(t)

t � z
dt

� �
:

It can be shown that C�(x + i0) = C�(x� i0), and the function C�(z) is holomorphic in the half-plane
Im z\1, except points that are zeros of the function G(z) in the strip 0\Im z\1.
The boundary value of the function K(z) = Pffiffiffiffi

2p
p � izC�(z) is the Fourier transform of the function

c0(ej). The function K(z) can be represented as

K(z) =
Pffiffiffiffiffiffi
2p
p � lPizX (z)

2p
ffiffiffiffiffiffi
2p
p

k0(z� i)

ð‘

�‘

cthpt

X+(t)(t + i)(t � z)
dt

� PizX (z)

2p
ffiffiffiffiffiffi
2p
p

(z� i)

ð‘

�‘

t

X +(t)(t + i)(t � z)
dt +

zX (z)

2p
ffiffiffiffiffiffi
2p
p

(z� i)
c0(0)

ð‘

�‘

1

X+(t)(t + i)(t � z)
dt

=
P

2p
+ K1(z) + K2(z) + K3(z), Im z\0

ð15Þ

Let us study the behavior at infinity of each of these integrals, the first of which gives

K1(z) = � lPizX (z)

2p
ffiffiffiffiffiffi
2p
p

k0(z� i)

ð‘

�‘

½cthpt � sgnt�dt

X +(t)(t + i)(t � z)
+

ð‘

�‘

sgnt dt

X +(t)(t + i)(t � z)

� �

Here, the first term tends to zero at infinity, and the second term

~K1(z) = � lPizX (z)

2p
ffiffiffiffiffiffi
2p
p

k0(z� i)

ð‘

�‘

sgnt dt

X (t)(t + i)(t � z)

as a result of the change of variables z = � 1=j, t = � 1=t0 can be represented in the form

~K�1 (j) = � lPX �(j)j

p
ffiffiffiffiffiffi
2p
p

k0(1 + ij)

ð‘

0

1

X + �(t0)(1� it0)(t0 � j)
dt0

where ~K�1 (j) = ~K1(j), X �(j) = X (j). Applying the formulas of Muskhelishvili [22] in the neighborhood of
the point j = 0, we will have ~K�1 (j) = O(j ln j).

Figure 2. Exact solution. Graphical sketch.
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Therefore, the function ~K1(z) (i.e., K1(z)) at infinity vanishes by no more than one order:
jK1(z) = O(jzj�(1�e)), jzj ! ‘ (e is an arbitrary positive number).

Based on the well-known Cauchy theorem, from the second and third integrals of formula (15) one
obtains

K2(z) =
PzX (z)

2
ffiffiffiffiffiffi
2p
p

(z� i)
, K3(z) = 0, Im z\0, and K�2 (‘) =

P

2
ffiffiffiffiffiffi
2p
p

Thus, from here one concludes that the function

M(z) = K(z)� P

2
ffiffiffiffiffiffi
2p
p , Im z\0

is holomorphic in a half-plane Im z\0, vanishes at infinity as O(jzj�(1�e)). Its boundary value is the
Fourier transform of a function u0(ej), which is continuous on the half-line j ł 0 (except maybe the
point j = 0 where it may have a discontinuity of the first kind). Thus, by the inverse Fourier transform,
we obtain the expression for the sought function

t(x) = c0(x) =
1ffiffiffiffiffiffi
2p
p

x

ð‘

�‘

M�(t)e�it ln x dt: ð16Þ

Based on the formulas (14), the behavior of the function (16) in a neighborhood of a point x = 1 has
the form

c0(x) = O(1), x! 1� : ð17Þ

Let us study the behavior of the function in a neighborhood of the point x = 0.
We conclude that the boundary value of function

Q(z) =
Pffiffiffiffiffiffi
2p
p � iz(C+(z)� g(z))G�1(z), 0\Im z\1,

is the Fourier transform of a function u0(ej) and the function Q0(z) = Q(z)� P

2
ffiffiffiffi
2p
p is holomorphic in the

half-plane Im z . 0 (except the points, where the function G(z) has roots) and vanishes at infinity with
order no less than jzj�1.

It is proved that the function G(z) has no zeros in the strip 0\Im z ł 1. Let z0 = v0 + it0 be a zero of
function G(z) with minimal imaginary part in the half-plane Im z . 0. Therefore, applying the Cauchy’s
residue theorem to the function e�ijzQ0(z) for a rectangle D(N) with a boundary L(N), that consists of
segments

½�N ,N �, ½N + i0,N + ib0�, ½N + ib0, � N + ib0�, ½�N + ib0, � N + i0�, b0 . t0

we will obtain

ð
L(N)

Q�(t)e�itj dt =

ðN

�N

Q�0 (t)e�itj dt � e�b0j

ðN

�N

Q�0 (t + ib0)e�itj dt + r(N , j) = K0et0j

where r(N , j)! 0, N ! ‘. Passing to the limit in the last equality and returning to the old variables, we
have

t(x) = c0(x) = O(xt0�1), x! 0 + , t0 . 1: ð18Þ

Thus, the integro-differential equation (11) has a unique solution, which is represented explicitly by
formula (16) and satisfies estimates (17) and (18).
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4. Discussion and numerical results

Asymptotic estimates for the solution of integro-differential equation (11) are obtained by formulas (17)
and (18). Numerical calculations made in MATLAB show that for any value of the elastic and geometri-
cal parameters, the function G(z) has no zeros in the strip 0\Im z ł 1, the latter providing finite values
of tangential contact stresses at the ends of the patch.

Thus, the tangential contact stresses are bounded at the end of the patch and the intensity factor of
contact stresses is equal to zero.

Under conditions of rigid contact between the plate and the patch, the contact stress in the neighbor-
hood of the ends of the patch can be significantly increased, i.e., the contact stress can have a singularity.

In this case, the normal interatomic distance increases, the grip strength between atoms begin to
decrease in the neighborhood of the ends of the inclusion and a precondition for the appearance of a
crack is created. When a crack appears, energy is released and the stresses begin to subside. Under the
conditions of adhesive contact of the plate with the patch, the latter phenomenon is excluded.

Obviously, the absence of stress concentration in the deformable body is extremely important from an
engineering point of view.

Numerical calculations (Cases 1–3) for different values of the parameters (close to natural) of the plate
(E1, E�1, E2, E�2, G1, G2, n1, n2) and patch (h) show that t0 . 1 and the contact stress increases insignifi-
cantly (with an accuracy of 10�9) depending on the increase of the parameter k0 (this means an increase
in the thickness h0 or a decrease in the shear modulus m0 of the adhesive, k0 := h0=m0) in the neighbor-
hood of the end of the patch.

4.1. Case 1

h0 = 5 � 10�n, n = 4, 3, 2 m0 = 0:117 � 109 E1 = 55:917 � 109

E�1 = 36:735 � 109 G1 = 5:592 � 109 G2 = 4:902 � 109

n1 = 0:32 n2 = 0:3h = 0:1

E2 = 19:236 � 109 E�2 = 30:145 � 109:

4.2. Case 2

h0 = 5 � 10�n, n = 4, 3, 2 m0 = 0:117 � 109 E1 = 23:517 � 109

E�1 = 40:125 � 109 G1 = 4:905 � 109 G2 = 8:315 � 109

n1 = 0:25 n2 = 0:38h = 0:1

E2 = 58:124 � 109 E�2 = 32:245 � 109:

k0 v0 t0

42:7 � 10�13, (n = 4) 0.000000001107485 7.718681569000190
42:7 � 10�12, (n = 3) 0.000000001107485 7.718681568951642
42:7 � 10�11, (n = 2) 0.000000001107487 7.718681568465962

k0 v0 t0

42:7 � 10�13, (n = 4) –0.000000000273508 6.715298333139011
42:7 � 10�12, (n = 3) –0.000000000273507 6.715298333099307
42:7 � 10�11, (n = 2) –0.000000000273506 6.715298332702201
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4.3. Case 3

h0 = 5 � 10�n, n = 4, 3, 2 m0 = 0:117 � 109 E1 = 28:155 � 109

E�1 = 30:475 � 109 G1 = 6:149 � 109 G2 = 5:850 � 109

n1 = 0:25 n2 = 0:08h = 0:1

E2 = 35:180 � 109 E�2 = 51:556 � 109:
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