41 research outputs found

    Learned motivation drives circadian physiology in the absence of the master circadian clock

    No full text
    The suprachiasmatic nucleus (SCN)-often referred to as the master circadian clock-is essential in generating physiologic rhythms and orchestrating synchrony among circadian clocks. This study tested the hypothesis that periodic motivation induced by rhythmically pairing 2 reinforcing stimuli [methamphetamine (Meth) and running wheel (RW)] restores autonomous circadian activity in arrhythmic SCN-lesioned (SCNX) C3H/HeN mice. Sham-surgery and SCNX mice were treated with either Meth (1.2 mg/kg, i.p.) or vehicle in association, dissociation, or absence of an RW. Only the association of Meth treatment and restricted RW access successfully reestablished entrained circadian rhythms in mice with SCNX. RW-likely acting as a link between the circadian and reward systems-promotes circadian entrainment of activity.We conclude that a conditioned drug response is a powerful tool to entrain, drive, and restore circadian physiology. Furthermore, an RW should be recognized as a potent input signal in addition to the conventional use as an output signal

    Artificial selection for determinate growth habit in soybean

    Get PDF
    Determinacy is an agronomically important trait associated with the domestication in soybean (Glycine max). Most soybean cultivars are classifiable into indeterminate and determinate growth habit, whereas Glycine soja, the wild progenitor of soybean, is indeterminate. Indeterminate (Dt1/Dt1) and determinate (dt1/dt1) genotypes, when mated, produce progeny that segregate in a monogenic pattern. Here, we show evidence that Dt1 is a homolog (designated as GmTfl1) of Arabidopsis terminal flower 1 (TFL1), a regulatory gene encoding a signaling protein of shoot meristems. The transition from indeterminate to determinate phenotypes in soybean is associated with independent human selections of four distinct single-nucleotide substitutions in the GmTfl1 gene, each of which led to a single amino acid change. Genetic diversity of a minicore collection of Chinese soybean landraces assessed by simple sequence repeat (SSR) markers and allelic variation at the GmTfl1 locus suggest that human selection for determinacy took place at early stages of landrace radiation. The GmTfl1 allele introduced into a determinate-type (tfl1/tfl1) Arabidopsis mutants fully restored the wild-type (TFL1/TFL1) phenotype, but the Gmtfl1 allele in tfl1/tfl1 mutants did not result in apparent phenotypic change. These observations indicate that GmTfl1 complements the functions of TFL1 in Arabidopsis. However, the GmTfl1 homeolog, despite its more recent divergence from GmTfl1 than from Arabidopsis TFL1, appears to be sub- or neo-functionalized, as revealed by the differential expression of the two genes at multiple plant developmental stages and by allelic analysis at both loci

    The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole

    No full text
    Plants are unique in their ability to store proteins in specialized protein storage vacuoles (PSVs) within seeds and vegetative tissues. Although plants use PSV proteins during germination, before photosynthesis is fully functional, the roles of PSVs in adult vegetative tissues are not understood. Trafficking pathways to PSVs and lytic vacuoles appear to be distinct. Lytic vacuoles are analogous evolutionarily to yeast and mammalian lysosomes. However, it is unclear whether trafficking to PSVs has any analogy to pathways in yeast or mammals, nor is PSV ultrastructure known in Arabidopsis vegetative tissue. Therefore, alternative approaches are required to identify components of this pathway. Here, we show that an Arabidopsis thaliana mutant that disrupts PSV trafficking identified TERMINAL FLOWER 1 (TFL1), a shoot meristem identity gene. The tfl1-19/mtv5 (for “modified traffic to the vacuole”) mutant is specifically defective in trafficking of proteins to the PSV. TFL1 localizes to endomembrane compartments and colocalizes with the putative δ-subunit of the AP-3 adapter complex. Our results suggest a developmental role for the PSV in vegetative tissues
    corecore