986 research outputs found

    Laptop Versus Longhand Note Taking in a Professional Doctorate Course: Student Performance, Attitudes, and Behaviors

    Get PDF
    Objective: To determine the relationship between longhand note taking versus laptop note taking on pharmacy students’ examination performance and identify differences in attitudes and behaviors as it relates to the note taking process. Methods: A small group of students consented voluntarily to take longhand notes, doing away with their laptops during portions of the course administered by study investigators. Analyses were conducted on block examination performance, with each student’s score on the first examination serving as a performance benchmark to assess change. Laptop and longhand note takers completed a survey regarding various aspects of their note taking attitudes and behaviors, and also included open text comments to capture qualitative experiential data. Results: Based upon a relatively small number of participants in the longhand cohort (n=11), the differences between the groups on subsequent examinations was approximately 3.5 percentage points in favor of the longhand note-takers. There were significant differences observed between the two groups on several survey items, with longhand note takers less likely to be distracted in class and more likely to agree that other students ask to review their notes due to the quality of those notes. Conclusions: Longhand note taking might facilitate more accurate recall or retrieval in test situations, thus producing improved test scores for certain types of students in certain types of courses; however additional research is needed. Faculty may consider whether modifying students’ classroom note taking practices may contribute to an improved learning experience

    Inserting Pharmacists in Primary Care Roles in an Ambulatory Care Setting

    Get PDF
    In this report, we suggest how pharmacy personnel may be used to alleviate some of the pressures currently impacting health system administrators. We look back to the role(s) of the hospital pharmacy and the hospital pharmacist historically and outline changes that have occurred and how these changes may be helpful to address several problem areas in the ambulatory care venue

    A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda).

    Get PDF
    BACKGROUND: The infraorder Anomura has long captivated the attention of evolutionary biologists due to its impressive morphological diversity and ecological adaptations. To date, 2500 extant species have been described but phylogenetic relationships at high taxonomic levels remain unresolved. Here, we reconstruct the evolutionary history-phylogeny, divergence times, character evolution and diversification-of this speciose clade. For this purpose, we sequenced two mitochondrial (16S and 12S) and three nuclear (H3, 18S and 28S) markers for 19 of the 20 extant families, using traditional Sanger and next-generation 454 sequencing methods. Molecular data were combined with 156 morphological characters in order to estimate the largest anomuran phylogeny to date. The anomuran fossil record allowed us to incorporate 31 fossils for divergence time analyses. RESULTS: Our best phylogenetic hypothesis (morphological + molecular data) supports most anomuran superfamilies and families as monophyletic. However, three families and eleven genera are recovered as para- and polyphyletic. Divergence time analysis dates the origin of Anomura to the Late Permian ~259 (224-296) MYA with many of the present day families radiating during the Jurassic and Early Cretaceous. Ancestral state reconstruction suggests that carcinization occurred independently 3 times within the group. The invasion of freshwater and terrestrial environments both occurred between the Late Cretaceous and Tertiary. Diversification analyses found the speciation rate to be low across Anomura, and we identify 2 major changes in the tempo of diversification; the most significant at the base of a clade that includes the squat-lobster family Chirostylidae. CONCLUSIONS: Our findings are compared against current classifications and previous hypotheses of anomuran relationships. Many families and genera appear to be poly- or paraphyletic suggesting a need for further taxonomic revisions at these levels. A divergence time analysis provides key insights into the origins of major lineages and events and the timing of morphological (body form) and ecological (habitat) transitions. Living anomuran biodiversity is the product of 2 major changes in the tempo of diversification; our initial insights suggest that the acquisition of a crab-like form did not act as a key innovation

    The Science of College: Navigating the First Year and Beyond

    Get PDF
    The transition to adulthood is a complex process, and college is pivotal to this experience. "The Science of College" aids entering college students--and the people who support them--in navigating college successfully, with up-to-date recommendations based upon real student situations, sound social science research, and the collective experiences of faculty, lecturers, advisors, and student support staff. The stories captured in this book highlight how the challenges that college students encounter vary in important ways based on demographics and social backgrounds. Despite these varied backgrounds, all students are more likely to have successful college experiences if they invest in their communities. Universities have many resources available, but as this book will show, students need to learn when to access which resources and how best to engage with people serving students. This includes having a better awareness of the different roles held by university faculty and staff, and navigating who to go to for what, based upon understanding their distinct sets of expertise and approaches to support. There is no single template for student success. Yet, this book highlights common issues that many students face and provides science-based advice for how to navigate college. Each topic covered is geared towards the life stage that most college students are in: emerging adulthood. In addition to the student-focused chapters, the book includes appendixes with activities for students, tips for parents, and methods information for faculty. Supplemental website materials suggest classroom activities for instructors who adopt this book within first-year seminars and general education courses

    Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients With Inflammatory Bowel Diseases.

    Get PDF
    BACKGROUND & AIMS: Therapeutic drug monitoring (TDM) is widely available for biologic therapies in patients with inflammatory bowel disease (IBD). We reviewed current data and provided expert opinion regarding the clinical utility of TDM for biologic therapies in IBD. METHODS: We used a modified Delphi method to establish consensus. A comprehensive literature review was performed regarding the use of TDM of biologic therapy in IBD and presented to international IBD specialists. Subsequently, 28 statements on the application of TDM in clinical practice were rated on a scale of 1 to 10 (1 = strongly disagree and 10 = strongly agree) by each of the panellists. Statements were accepted if 80% or more of the participants agreed with a score ≄7. The remaining statements were discussed and revised based on the available evidence followed by a second round of voting. RESULTS: The panel agreed on 24 (86%) statements. For anti-tumor necrosis factor (anti-TNF) therapies, proactive TDM was found to be appropriate after induction and at least once during maintenance therapy, but this was not the case for the other biologics. Reactive TDM was appropriate for all agents both for primary non-response and secondary loss of response. The panellists also agreed on several statements regarding TDM and appropriate drug and anti-drug antibody (ADA) concentration thresholds for biologics in specific clinical scenarios. CONCLUSION: Consensus was achieved towards the utility of TDM of biologics in IBD, particularly anti-TNF therapies. More data are needed especially on non-anti-TNF biologics to further define optimal drug concentration and ADA thresholds as these can vary depending on the therapeutic outcomes assessed

    Development and validation of a targeted gene sequencing panel for application to disparate cancers

    Get PDF
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy

    Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

    Get PDF
    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.Funding for the project was provided by the Wellcome Trust for UK10K (WT091310) and DDD Study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003] - see www.ddduk.org/access.html for full acknowledgement. This work was supported in part by the Intramural Research Program of the National Human Genome Research Institute and the Common Fund, NIH Office of the Director. This work was supported in part by the German Ministry of Research and Education (grant nos. 01GS08160 and 01GS08167; German Mental Retardation Network) as part of the National Genome Research Network to A.R. and D.W. and by the Deutsche Forschungsgemeinschaft (AB393/2-2) to A.R. Brain expression data was provided by the UK Human Brain Expression Consortium (UKBEC), which comprises John A. Hardy, Mina Ryten, Michael Weale, Daniah Trabzuni, Adaikalavan Ramasamy, Colin Smith and Robert Walker, affiliated with UCL Institute of Neurology (J.H., M.R., D.T.), King’s College London (M.R., M.W., A.R.) and the University of Edinburgh (C.S., R.W.)

    52 Genetic Loci Influencing Myocardial Mass.

    Get PDF
    BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES: This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS: We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10(-8). These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS: Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets

    The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R ⊕ to 1.6 R ⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system
    • 

    corecore