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Abstract 

BACKGROUND: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. 

Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and 

duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration 

reflect changes in myocardial mass and conduction, and are associated with increased risk of heart 

failure and death. 

OBJECTIVE: To gain insights into the genetic determinants of myocardial mass, 

METHODS: We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 

individuals of European ancestry, followed by extensive biological and functional assessment. 

RESULTS:   We identified 52 genomic loci, of which 32 are novel, reliably associated with one or 

more QRS phenotypes at P<1×10-8. These loci are enriched in regions of open chromatin, histone 

modifications, and transcription factor binding suggesting that they represent regions of the genome that 

are actively transcribed in the human heart. Pathway analyses provide evidence that these loci play a 

role in cardiac hypertrophy. We further highlight 67 candidate genes at the identified loci that are 

preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila 

melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the 

SCN5A/SCN10A locus in vitro and in vivo.  

CONCLUSIONS: Taken together, our findings provide new insights into genes and biological 

pathways controlling myocardial mass and may help identify novel therapeutic targets. 

 

Keywords:  Genetic association study, QRS, left ventricular hypertrophy, heart failure, 

electrocardiogram, genes  
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Abbreviations list 

DHS  Deoxyribonuclease hypersensitivity sites 

DNase  Deoxyribonuclease 

ECG  Electrocardiogram 

eQTL   Expression quantitative trait locus 

FDR  False Discovery Rate 

GWAS  Genome-wide association study 

LD  Linkage Disequilibrium 

RNAi   Ribonucleic acid interference  

SNP  Single Nucleotide Polymorphisms 

TF  Transcription Factor 
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Introduction 

 

The role of the heart is to provide adequate circulation of blood to meet the body's requirements of 

oxygen and nutrients. The QRS complex on the ECG is the most widely used measurement of cardiac 

depolarization, which causes the ventricular muscle to contract, resulting in pulsatile blood flow. The 

amplitude and duration of the QRS complex reflects the conduction through the left ventricle and is well 

correlated with left ventricular mass as measured by echocardiography (1,2). ECG measurements of the 

QRS complex are important in clinical and preclinical cardiovascular diseases such as cardiac 

hypertrophy, heart failure, and various cardiomyopathies, and can also predict cardiovascular 

mortality(3-6).  

Identification of specific genes influencing the QRS complex may thus enhance our understanding of the 

human heart and ultimately lead to prevention of cardiovascular disease and death. To further our 

understanding of the genetic factors influencing the QRS complex, we carried out a large scale GWAS 

and replication study of 4 related and clinically used QRS traits: the Sokolow-Lyon, Cornell and 12-

lead-voltage duration products (12-leadsum), and QRS duration. We identified 52 loci that were 

subsequently interrogated using bioinformatics and experimental approaches to gain more insights into 

the biological mechanisms regulating cardiac mass and QRS parameters.  
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Methods 

Additional details on the methods can be found in the Supplementary Note. 

 

Genome wide analyses and replication testing 

Our study design is summarized in Fig. S1. Briefly, we combined summary statistics from 24 studies for 

up to 2,766,983 autosomal SNPs using an inverse-variance fixed-effects meta-analysis for each QRS 

trait. We performed replication testing for loci showing suggestive association (1×10-8<P<5×10-7) (table 

S1 and S2). The threshold for genome-wide significance was set at P<1×10-8. 

 

DNA Functional elements, coding variation and enrichment analyses 

We performed an intersection between SNPs and regions of DHSs, covalently modified histones and 

genomic features (ChromHMM) of cardiac tissues mapped by the National Institutes of Health 

Roadmap Epigenomics Program, as well as various cardiac transcription factor binding sites (GATA4, 

MEF2, SRF, TBX5, TBX3, GATA4 and Nkx2-5) measured by Chip-seq.  

  

Experimental cardiac enhancer studies 

Single cell suspensions of human ventricular tissue was obtained by dissociation with IKA Ultra Turrax 

T5 FU, followed by dounce homogenization. 4C templates were mixed and sequenced simultaneously in 

one Illumina HiSeq 2000 lane. Enhancer candidate regions with major and minor allele for rs6781009 

were obtained by PCR from human control DNA and cloned into the Hsp68-LacZ reporter vector. DNA 

was injected into the pronucleus of fertilized FVB strain egg and approximately 200 injections per 

construct were performed. Embryos were harvested, stained with X-gal to detect LacZ activity.  
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H10 cells, grown in 12-well plates in DMEM supplemented with 10% FCS (Gibco-BRL) and glutamine, 

were transfected using polyethylenimine 25 kDa (PEI, Brunschwick) at a 1:3 ratio (DNA:PEI). 

Transfections were carried out at least three times and measured in triplo. Luciferase measurements 

were performed using a Promega Turner Biosystems Modulus Multimode Reader luminometer. 

  

Identification of candidate genes 

We considered genes to be causal candidates based on 1) the nearest gene and any other gene located 

within 10kb of the sentinel SNP; 2) genes containing coding variants in LD with the ST-T wave SNPs at 

r2>0.8; 3) GRAIL analyses using the 2006 dataset to avoid confounding by subsequent GWAS 

discovery, and 3) genes with an eQTL analyses in cis using 4 independent sets of cardiac left ventricle 

and blood tissues. Ingenuity Pathway Analysis (IPA) Knowledge Base March 2015 (Ingenuity Systems, 

CA, USA) was used to explore molecular pathways between proteins encoded by the 67 candidate genes 

from the 52 genome-wide significant loci. 

 

Drosophila melanogaster and Mus Musculus methods  

We queried a D. melanogaster dataset containing a genome-wide phenotypic screen of cardiac specific 

RNAi-silencing of evolutionarily conserved genes under conditions of stress. We also queried the 

international database resource for the laboratory mouse (MGI-Mouse Genome Informatics) and 

manually curated Mammalian Phenotypes (MP) identifiers related to cardiac phenotypes. To illustrate 

that prioritized genes may play a critical role in heart development we tested CG4743/SLC25A26, 

Fhos/FHOD3, Cka/STRN, NACα/NACA, EcR/NR1H and Hand/HAND1 by performing heart-specific 

RNAi knockdown with the cardiac Hand4.2-Gal4 driver line.  
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Gene expression profiling and cardiomyocyte differentiation analysis 

We collected 43,278 raw Affymetrix Human Genome U133 Plus 2.0 Arrays from the Gene Expression 

Omnibus (GEO) containing human gene expression data. RMA was used for normalization and 

subsequently conducted stringent quality control and processing of the data, which resulted in a tissue-

expression matrix. After quality control 37,427 samples remained and assigned 54,675 

different probesets to 19,997 different Ensembl genes used for human tissue expression profiling. To 

explore gene-expression of our candidate genes during cardiac differentiation we performed RNA-

sequencing using E14 Tg(Nkx2-5-EmGFP) mouse embryonic stem cells cultured feeder-free conditions 

and subsequently differentiated.  

 

Results 

 

Large scale meta-analysis of genome wide association studies 

Characteristics of studies, participants, genotyping arrays and imputation are summarized in table S1 

and S2. Together our studies comprise 60,255 individuals of European ancestry ascertained in North 

America and Europe, with a maximum sample size of 54,993 for Sokolow-Lyon, 58,862 for Cornell, 

48,632 for 12-leadsum, and 60,255 for QRS duration. Across the genome, 52 independent loci, 32 of 

which are novel, reached genome-wide significance for association with one or more QRS phenotypes 

(Fig. 1, Fig. S2, table S3 and Supplementary Note). At each locus, we defined a single ‘sentinel’ SNP 

with the lowest P-value against any of the four phenotypes; regional association plots for the 52 loci are 

shown in Fig. S3. Among the 52 loci, 32 were associated with only one QRS phenotype, and 20 with at 
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least two phenotypes (Fig. S4). The total number of locus-phenotype associations at P<10-8 was 79 (72 

SNPs), of which 59 are novel (table S3). Full lists of the sentinel SNPs and the SNPs associated with 

any phenotype at P<10-6 are provided in table S4 and S5. All previously known QRS duration loci 

showed evidence for association (P<10-6, table S6). Among the 32 novel loci, 8 demonstrated genome-

wide significant association with Sokolow-Lyon, 9 with Cornell, 20 with 12-leadsum, and 9 with QRS 

duration (table S5). Collectively, the total variance explained by the 52 sentinel SNPs for the QRS traits 

was between 2.7% (Sokolow-Lyon) and 5.0% (QRS-duration) (table S7). At some loci we found 

evidence for multiple independent associations with QRS phenotypes at P<10-8 in conditional 

analyses(7) (table S8 and Supplementary Note). Among the 52 loci identified 8 have been associated 

previously with PR (reflecting atrial and atrioventricular node function), 5 with QT duration (ventricular 

repolarization) and 2 with heart rate (sinus node function) (table S6), indicating genetic overlap among 

the four cardiac measures studied. We further demonstrated that there was directional consistency of the 

association of common variants identified in this study with QRS phenotypes in other ethnic groups 

(Fig. S1, table S9, and Supplementary note).  

 

Functional annotation of the QRS associations 

To better capture common sequence variants at the 52 loci, we queried the 1000 Genomes Project 

dataset(8), and identified 41 non-synonymous SNPs in 17 genes that are in high LD (r2>0.8) with 12 of 

the sentinel SNPs (table S10), which represent an initial set of candidate variants that may have a 

functional effect on the QRS phenotypes through changes in protein structure and function.  

To assess the potential role of gene expression regulation, we tested the 52 loci for enrichment of 

deoxyribonuclease I (DNase I) hypersensitive sites (DHSs)(9). In an analysis across 349 diverse cell 
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lines, cultured primary cells and fetal tissues(10) mapped by the ENCODE project(11) and the National 

Institute of Health Roadmap Epigenomics Program(12), the majority (42 of 52) of sentinel SNPs were 

located in DHSs. In human fetal heart tissue we found that less than half (22 of 52) overlapped DHSs, 

which still represents a ~3.5-fold enrichment compared to the null expectation (P=7.7×10-12, Fig. 2A). 

Further, the enrichment of genome-wide significant SNPs (P<10-8) in DHSs was strongest within the 

first 100 bp around the sentinel variants (Fig. 2B). In addition, there was a strong enrichment for histone 

marks and chromatin states(13) associated with active enhancers, promoters and transcription in human 

heart; by contrast no enrichment was observed for transcriptionally repressive histone marks or states 

(Fig. 2, C and D and Fig. S5). Strikingly, we observed increasing enrichment of activating histone 

marks at the identified QRS loci during the process of differentiating mouse embryonic stem cells into 

cardiomyocytes (Fig. S6). Altogether, these findings are consistent with earlier observations of selective 

enrichment of trait-associated variants within DHSs of specific cell of tissue types(10), and point to a 

regulatory role of the QRS-associated loci during cardiac development.  

We next surveyed our genome-wide significant SNPs in DHSs for perturbation of transcription factor 

(TF) recognition sequences, since these sites can point directly to binding events (Supplementary 

Note). Of the 22 sentinel SNPs in human fetal heart DHSs, 11 are predicted to alter TF recognition 

sequences (table S11). When considering all genome-wide significant SNPs (P<10-8) as well as those in 

high LD (r2>0.8), 402 SNPs in the co-localizing DHSs perturb transcription recognition sequences, 

including those of important cardiac and muscle developmental regulators like TBX, GATA-4, and 

MEF2. When we intersected the GWAS results with ChIP-seq data from mouse and human cardiac 

tissue(14-16), we found enrichment in enhancers marked by p300, sites bound by RNA Polymerase II 

(RNAP2), and the transcription factors NKX2-5, GATA-4, TBX3, TBX5, and SRF (Fig. 2E). Nine of 
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our 52 loci contained not only fetal heart DHSs but also ChIP-seq validated TF binding sites. SNPs 

overlapping TF binding sites were 5.65 fold enriched within DHSs (P=9.0×10-10) but not outside DHSs 

(P=0.20). The associations of the 52 sentinel SNPs with all tested functional elements are summarized in 

Fig. 1. We validated several candidate regulatory regions identified above as heart enhancers in vivo. 

Activity of 4 exemplar novel human cardiac enhancers in embryonic transgenic mice stained for LacZ 

enhancer reporter activity are shown in Fig. 3A. Recently, rs6801957 (Fig. 1) in the SCN5A/SCN10A 

locus was reported to influence the activity of a regulatory element affecting SCN5A expression(16,17). 

Conditional analysis (table S8) revealed that rs6781009 (at 180-kb from the sentinel) is an additional 

novel independent signal at this locus. Our follow-up in silico and experimental results (Fig. 3) indicate 

the presence of in vivo heart enhancers in genome regions associated with QRS traits. 

Identification of candidate genes 

Across the 52 loci, 974 annotated genes are located within 1 Mb of all sentinel SNPs. Among these 

genes, we prioritized potential candidates using an established complementary strategy (18,19); we 

chose (i.) Genes nearest to the sentinel SNP, and any other genes within 10kb (56 genes; Fig. 1); (ii.) 

Genes containing a non-synonymous SNP in high LD (r2>0.8) with the sentinel SNP (11 genes; table 

S10); (iii.) Protein-coding genes with cis-eQTL associated with sentinel SNP (14 genes; table S12), and 

(iv.) GRAIL literature analysis(20) (16 genes table S13) with ‘cardiac’, ‘muscle’ and ‘heart’ as the top 3 

keywords describing the observed functional connections. In total, this strategy identified 67 candidate 

genes at the 52 loci (Fig. 1). Pathway analysis confirmed that the list of 67 candidate genes is strongly 

enriched for genes known to be involved in cardiovascular and muscular system development and 

function (P=1×10-56; table S14 and S15). We have summarized the available functional annotations for 

all 67 candidates in table S16, including established links from the Online Mendelian Inheritance in 
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Man (OMIM) between candidate genes and familial cardiomyopathies (TNNT2, TTN, PLN, MYBPC3) 

and cardiac arrhythmias (CASQ2). We also identified genes that are associated with atrial septal defects 

(TBX20) and more complex syndromes involving cardiac abnormalities such as the Schinzel-Giedion 

midface retraction syndrome (SETBP1)(21) and the ulnar-mammary syndrome (TBX3)(22).  

Insights from gene expression profiling and model organisms 

We explored gene expression profiles of our candidate genes in data derived from 37,427 Affymetrix 

U133 Plus 2.0 arrays across 40 annotated tissues. We could reliably assign a probe for 63 of our 67 

candidate genes. On average expression levels for these transcripts were higher in cardiac-derived 

samples compared to other transcripts in the same sample (P=9.8×10-6 for heart tissue; 

Wilcoxon test; Fig. S7) and also when compared to the same transcripts in other tissues (P=0.005 after 

Bonferroni correction; Fig. S8). To further investigate the potential role of these candidate genes in 

cardiac development, we assessed temporal gene expression patterns during in vitro differentiation of 

mouse embryonic stem cells (ESC) via mesoderm (MD) and cardiac precursor (CP) cells to 

cardiomyocytes (CM). Seven percent of genes are mainly expressed during the ESC stage, 22% during 

MD stage, 7% in the CP stage and 64% in the cardiomyocyte stage. Compared to other genes, the 

candidate genes were more highly expressed in cardiomyocytes (P=5.4×10-8, Wilcoxon test; Fig. S9). 

These results suggest that our candidate gene set is enriched for genes differentially expressed in cardiac 

tissue and increasingly expressed during cardiac development. 

Next, we analyzed data from model organisms to explore the function of the selected candidate genes. 

From cardiac tissue-specific RNAi knockdown data collected in D. melanogaster, we found that the 67 

candidate genes were 2.3-fold enriched for stress-induced cardiac death (9 genes, P=1.84×10-2; Fig. 

S10). To illustrate that prioritized genes may play a critical role in heart development we tested 4 
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(CG4743/SLC25A26, Fhos/FHOD3, Cka/STRN, NACα/NACA) of these 9 genes with unknown cardiac 

function by performing heart-specific RNAi knockdown with the cardiac Hand4.2-Gal4 driver line. We 

also re-tested EcR/NR1H, which has multiple homologous genes in mammals, as well as Hand/HAND1 

as this gene was only tested in as a full-knockout in early development but not in adult D. melanogaster 

heart using cardiac specific knockdown. Adult hearts of Cka/STRN, NACα/NACA, and EcR/NR1H 

RNAi showed severe cardiac defects (Fig. 4). Knockdown of Hand/HAND1 and Cka/STRN both had a 

reduced cardiac heart rate. We also expanded on gene-by-gene analysis and identified 6 further genes 

causing cardiac abnormalities (Supplementary Note and table S17). From the Mouse Genome 

Informatics database, knockout models were annotated for 45 orthologues of the 67 candidate genes, of 

which 18 (40%) revealed a cardiac phenotype (table S16). This represents a 5.2-fold enrichment 

compared to randomly matched sets of 67 genes (P=3.4×10-14; Fig. S10). Given the evolutionary 

conservation the observed heart phenotypes in these model organisms suggest potentially important 

roles for the significant GWAS loci in electrical and contractile properties of the human heart. 

Interestingly, the 11p11.2 locus harbors multiple candidate genes (Fig. 1), including MYBPC3, ACP2, 

MADD, and NR1H3. MYBPC3 deficiency is well established to cause hypertrophic and dilated 

cardiomyopathies in both human and mouse models and thus represents a plausible candidate gene 

(table S16). In addition to MYBPC3, eQTL and histone modification data also suggests a potential role 

for NR1H3 (Fig. S11), as decreased expression of NR1H3 was associated with higher QRS voltages. 

However, NR1H3 deficient mice do not spontaneously develop a cardiac hypertrophic phenotype (MGI: 

1352462). To study the potential cardiac effects of NR1H3, we created a transgenic mouse with cardiac-

specific overexpression of NR1H3 under the control of the Myh6 promoter and found a diminished 

susceptibility to perturbations such as transverse aortic constriction and angiotensin II infusion that 
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provoke cardiac hypertrophy(23). This observation is in line with protective effects due to treatment 

with T0901317, a synthetic NR1H3 agonist, in mice challenged with aortic constriction(24). These data 

highlight the importance of systematic approaches to identify causal genes beyond well-known 

candidates. 

 

Insights from Data-Driven Expression-Prioritized Integration for Complex Traits (DEPICT)   

As a complementary approach we employed the newly developed computational tool DEPICT(25) to 

analyze functional connections among associated loci (Supplementary Note). Enrichment of expression 

in 209 particular tissues and cell types identified heart and heart ventricles as the most relevant tissue for 

our association findings (Fig. 5A; table S18) and identified 404 significantly (FDR <5%) enriched gene 

sets (table S19). Comparing the names of these sets with those of the remaining 14,057 gene sets 

showed an over-representation of the common key words ‘Abnormal’, 'Muscle', 'Heart', 'Cardiac', 

'Morphology' (table S20). We investigated similarities among gene sets by clustering them on the basis 

of the correlation between scores for all genes (Supplementary Note). Many of the resulting 43 meta-

gene sets are correlated and relevant to cardiac biology (Fig. 5B). As an example we show the 

correlation structure within the second most significant meta-gene set “Dilated Heart Left Ventricle” 

(Fig. S12). When prioritizing genes based on functional similarities among genes from different 

associated regions DEPICT identified 35 genes (FDR<5%) at 27 of the 52 loci (Fig. 1, table S21). 
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Discussion 

 

In this study, we performed a meta-analysis of GWAS in 73,518 individuals for 4 quantitative QRS 

phenotypes and identified 52 independent genetic loci influencing these traits with 79 locus-phenotype 

associations; the majority of these discoveries are novel. Our loci are co-localized with open chromatin, 

histone modification, and TF binding sites specifically in cardiac tissue, and contain in vivo functional 

enhancers. We also provide direct evidence that rs6781009, located in a cardiac enhancer, interacts with 

the promoter of SCN5A to modify expression levels. Based on multiple criteria, we defined a core set of 

67 candidate genes which we believe are likely to influence cardiac mass and function. We have 

provided several exemplar experiments to further support this hypothesis.  

We identified a number of loci containing genes that are directly or indirectly key the function of 

cardiomyocytes and cardiac function. TTN, MYBPC3, TNNT2, SYNPO2L, and MYH7B are essential 

components of the cardiac sarcomere; PLN, CTNNA3, PRKCA, CASQ2, and STRN are also examples of 

genes essential for cardiac myocyte function; while several key cardiac transcription factors are 

prominently involved in cardiac muscle and tissue development such as MEF2D, HAND1, TBX20, TBX3 

and NACA. The abundance of candidate genes known to be involved in cardiac muscle function 

strengthen the hypothesis that the easily obtainable QRS-voltage phenotypes of the electrocardiogram 

are effective in capturing unknown loci that harbor genes that are likely to play an important role in left 

ventricular mass but are currently not well understood. The co-localization of our genetic loci with 

regulatory DNA elements (e.g. enhancers, promoters and transcription factor binding sites) that are 

active in cardiac tissues further support the relevance of the genes within these loci. The current work 

was not designed to provide an explanation for association of each loci and each individual gene. It is 
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clear that future translational efforts should be undertaken to resolve the causal genes and exact 

molecular machinery resulting the in the phenotype should consider mapping effect of genetic variants 

on the these functional elements at each of the identified loci. Nevertheless we have provided some 

exemplar preliminary elements to provide some early insights in strategies that can be undertaken to 

follow-up our findings. For example, we performed a series of experiments to demonstrate in vivo 

effects of rs6781009 on expression. Dedicated experiments might also elucidate loci containing effects 

on multiple plausible genes. In one of our loci we identified a very strong candidate gene (MYBPC3), 

well known to be involved in hypertrophic cardiomyopaties. However, using additional layers of 

information derived from gene expression and histone modifications we also considered NR1H3 and 

were able to link overexpression of this gene to cardiac protection of hypertrophy. These examples fuel 

our expectation that the presented shortlist of SNP associations and the identified candidate genes 

provided in this work are a valuable resource that will help to prioritize and guide future translational 

studies to further our knowledge on the (patho)physiology of cardiac hypertrophy. 

Our findings do have some limitations that warrant consideration. As for all current GWAS, we 

have only studied a finite number (~2.8 million) marker on the genome. Further fine mapping studies 

might be required to narrow the signal of association even further and to identify the potential causal 

variants with higher accuracy. Also additional exome focused arrays or whole genome sequencing might 

lead to a stronger signal within a locus or to multiple additional independent signals within a locus. To 

understand genetic mechanisms and to identify candidate genes, we have studied eQTLs. Although we 

studied the largest set of human cardiac eQTL available to date, the absolute number of studied samples 

is relatively small compared to eQTL data available in easily accessible peripheral blood. Finally, our 

electrocardiographic indices are generally considered markers of cardiac hypertrophy, they may also 
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reflect electrical remodeling of the action potential and not mass per se. Nevertheless, the variables 

studied here harbor important prognostic information, independently from cardiac mass parameters as 

assessed by echocardiography(26). This further underscores the relevance of the trait studied and the 

importance of understanding its genetic determinants.  

In conclusion, we have identified 52 genomic loci, of which 32 are novel, associated with electrically 

active cardiac mass, prioritized 67 candidate genes and showed their relevance in cardiac biology using 

bioinformatics approaches and performed in-vitro and in-vivo experiments, going beyond the classical 

GWAS approach. To facilitate and accelerate future studies aimed at a better understanding of cardiac 

hypertrophy, heart failure and related diseases, we made our results of genome-wide associations 

publicly available. 

Perspectives 

 

COMPETENCY IN MEDICAL KNOWLEDGE: Abnormalities of cardiac mass are underlying many 

cardiovascular diseases such as heart failure. The lack of knowledge surrounding the basis of 

cardiomyocyte dysfunction and heart failure susceptibility is a major roadblock to understand risk for 

heart failure and to designing innovative strategies for therapy. 

 

TRANSLATIONAL OUTLOOK: These findings will be a valuable resource for studying biological 

processes underlying cardiac mass, ultimately leading to prevention of cardiovascular disease and death.  
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Figure legends 

 

Fig. 1 Genome-wide associations and candidate genes 

Overlay Manhattan plot showing the results for the genome-wide associations with QRS traits amongst 

Europeans. SNPs reaching genome-wide significance (P<1x10-8) are colored red (novel loci) or blue 

(previously reported loci). Candidate genes have been identified by one or multiple strategies; n nearest; 

c coding non-synonymous variant; g GRAIL tool; e eQTL; d DEPICT tool.  The presence of associated 

eQTL, coding SNPs, DNAse hypersensitivity sites, chromatin states, TF binding sites are indicated for 

lead SNPs (light blue) or those in high (r2>0.8) LD (dark blue). 

  

Fig. 2 Functional annotations 

(a) The 52 sentinel SNPs are significantly enriched in DHSs of the human fetal heart compared to the 

matched random distribution of HapMap SNPs. (b) The impact of physical distance between SNPs that 

meet genome wide significance (P<1×10-8) on enrichment of fetal heart relative to all other tissues at 

DHs. The enrichment is strongest at the SNP’s location and decreases after 100bp from the SNP sites. 

(c) SNPs associated with QRS traits are enriched for the activating histone modifications H3K27ac, 

H3K4me3, H3K4me1 and H3K36me3 in human left ventricle, which increased at more stringent GWAS 

P-value thresholds. The repressive mark H3K27me3 is not enriched while H3K9me3 is significantly 

reduced, suggesting that QRS-trait loci are predominantly expressed in the left ventricle. (d) To capture 

the greater complexity we performed an integrative analysis in an 18-state ‘expanded’ ChromHMM 

model representative of different functional regions of the genome. The left panel shows the enrichment 

of the 52 loci for the 18-state model using the six core histone marks. The right panel shows the total 
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number of the 52 loci overlapped by each feature. (e) SNPs (P<1×10-8) were also significantly enriched 

for various factors in the human heart, mouse heart and the HL-1 cell-line. 

 

Fig. 3 Functional follow-up of rs6781009 in the SCN5A locus 

(a) In vivo activity of 4 exemplar human cardiac enhancers in embryonic transgenic mice stained for 

LacZ enhancer reporter activity (dark blue). Additional examples of previously described enhancers near 

lead SNPs are provided in Fig. S13 (b) Position of the regulatory element containing rs6781009 on the 

SCN5A-SCN10A locus. GWAS signals are plotted on -log(P) scale in dark blue. The regulatory element 

is bound by TBX3, TBX5, and P300 (lower black traces) in mouse, and the contact profile of the SCN5A 

promoter obtained by 4C-seq human cardiac ventricular tissue revealed an interaction between this 

regulatory element and the SCN5A promoter (upper black trace and contact profile). Normalized contact 

intensities (gray dots) and their running median trends (black line) are depicted for the SCN5A promoter 

viewpoint. Medians are computed for 4 kb windows and the gray band displays the 20-80% percentiles 

for these windows. Below the profile statistical enrichment across differently scaled window sizes (from 

2 kb (top row) to 50 kb (bottom)) is depicted of the observed number of sequenced ligation products 

over the expected total coverage of captured products, with the latter being estimated based on a 

probabilistic background model. Local changes in color codes indicate regions statistically enriched for 

captured sequences.  The lowest box shows the linkage disequilibrium pattern for the HapMap CEU 

population. (c) Luciferase assay performed in H10 cells showing a high constitutive activity for the 

enhancer core element (0.6kb) containing the major allele for rs6781009, which is reduced for the minor 

allele in both a large enhancer construct (1.5kb), as well as in the core enhancer element (0.6kb) 

*P<0.01 (d) Dorsal views of hearts containing the human regulatory element with the major vs minor 
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allele for rs6781009 in a LacZ reporter vector, showing specific expression of the enhancer in the 

interventricular septum (ivs) for the major allele, which is absent for the minor allele *P<0,05. ra, right 

atrium; la, left atrium; rv, right ventricle; lv, left ventricle. 

 

Fig. 4 Heart-specific RNAi knockdown in Drosophila 

Cardiac defects upon heart-specific RNAi knockdown in Drosophila. (a) Wild-type dorsal heart tube 

stained with the F-actin stain phalloidin. Magnified region (right) is highlighted. Arrowheads point to 

ostia (inflow tracks), arrow shows the circumferential orientation of myofibrils. (b) Cka/Striatin RNAi 

induces myofibrillar disarrangement. Myofibrils are oriented in a disorganized, mainly anterior-posterior 

orientation with gaps in between (arrow). (c) Knockdown of NACα/NACA causes severe cardiac tissue 

disintegration. Adult cardiomyocyte tissue may be completely absent (asterisk), while some heart-

associated longitudinal muscles are still present (arrowheads). At larval stages the heart is much less 

affected, suggesting maturation or remodeling defect. (d) Knockdown of EcR/NR1H blocks cardiac 

remodeling and causes myofibrillar disarray (arrow). Ventral longitudinal muscles are also abnormal 

(arrowhead). 

 

Fig. 5 Functional connections of gene expression networks 

DEPICT analysis. (a) Plots showing the enrichment of loci associated with QRS traits in specific 

physiological systems. (b) Graphical display of DEPICT gene set enrichment analysis. Gene meta-sets 

are represented by nodes colored according to statistical significance, and similarities between them are 

indicated by edges scaled according to their correlation (only correlations with r >0.3 are shown).  
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Supplementary Note 

QRS traits 
The amplitude and duration of the QRS complex reflects the conduction through the left 

ventricle and is well correlated with left ventricular mass as measured by echocardiography 
1-3. ECG measurements of the QRS complex are important in clinical and preclinical 

cardiovascular diseases such as cardiac hypertrophy, heart failure, and various 

cardiomyopathies, and can also predict cardiovascular mortality4-7. We studied 4 related 

and clinically applied QRS traits associated with left ventricular hypertrophy:  

1. Sokolow-Lyon; trait (sum of S wave in V1 plus R wave in V5 or R wave in V6) 

originally reported by Maurice Sokolow and Thomas Lyon in 19498 and developed 

based on comparison of cases with abnormal electrocardiograms and in whom a 

cardiac disorder capable of producing increased strain on the left ventricle (such as 

hypertension, aortic valvular lesions, coarctation of the aorta, patent ductus 

arterious) was present to healthy controls. Ninety percent of cases had hypertension 

exceeding 155/95mmHg, with a mean blood pressure of 197/117 and a mean 

increase in roentgenologic transverse diameter of the heart of 15.8 percent.  

2. Cornell; trait (sum of R in aVL and the S in V3) originally reported by Paul N Casale 

et al in 1985 based on comparison consecutive patients (including hypertension, 

valvular heart disease, coronary artery disease, cardiomyopathy, pericardial disease, 

mitral valve prolapse) undergoing M-mode echocardiography to determine left 

ventricular mass.9  

3. 12-lead sum; trait (sum of R to S in all 12 leads) originally reported by Siegel and 

Roberts as a marker for the severity of aortic stenosis in a post-mortem study10, 

Molloy et al reported on the correlation with echocardiographic determined left 

ventricular mass.11  

4. QRS duration; is frequently increased in left ventricular hypertrophy12. This is 

manifest by a diffuse increase in QRS duration or an increase in time from onset of 

QRS to the R-wave peak in V5 or V6. The increased QRS duration may be attributed 

to the increased thickness of the left ventricular wall and to intramural fibrosis13, 

which distorts and prolongs the transmural impulse propagation.14  

Multiple ECG markers of increased left ventricular mass were examined because of the 

relatively limited sensitivity of any one of these markers alone and because performance of 
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these markers can vary with gender, ethnicity and body characteristics. Therefore the 

AHA/ACCF/HRS also recommends not using a single criterion compared to others14. The 

three voltage criteria were multiplied with QRS duration to obtain voltage-duration products 

as an approximation of the area under the QRS complex which show stronger correlation 

with left ventricular mass as determined post-mortem11 or by cardiac magnetic resonance 

or echocardiographic imaging15,16. 

Methods of genome-wide association and replication testing 
In each study, we genotyped single nucleotide polymorphisms (SNPs) and imputed 

autosomal SNPs catalogued in HapMap Phase 2 CEU panel. Participants with atrial 

fibrillation, history of myocardial infarction or heart failure, QRS duration of >120ms, QRS-

axis smaller -30 or larger than +90 degrees, and extreme measurements (more than ±4SD 

from mean on a per phenotype basis) were excluded. Optional exclusions, if available, were 

pacemaker or AICD implant, pacemaker activity on ECG, WPW, class I and class III 

blocking medication (ATC code prefix C01B). Characteristics of participants, genotyping 

arrays and imputation are summarized (table  S1 and S2). 

SNP associations with each phenotype were tested by linear regression using an additive 

genetic model. Associations were tested with age, gender, height and body mass index as 

covariates with principal components and other study specific factors to account of 

population substructure as described in table S2. Test statistics from each cohort were then 

corrected for their respective genomic control inflation factor to adjust for residual 

population sub-structure (table S23).  

We then carried out meta-analysis of results from the 24 individual cohorts using inverse 

variance meta-analyses by two independent analysis groups using METAL17 and MANTEL. 

Consistency was confirmed against z-scores weighted by square root of sample size meta-

analyses method. In total, 60,255 individuals were included (maximum sample size 60,255 

for QRS-duration, 54,993 for Sokolow-Lyon, 58,862 for Cornell, and 48,632 for 12-leadsum) 

and 2,766,983 autosomal SNPs. Genomic control was also applied to the final meta-

analysis results. 

We used PLINK18 to cluster SNPs into genomic loci using a 2Mb window; clustering was 

done separately for each phenotype. There were 1,913 SNPs associated with one or more 

QRS traits at P<10-8 distributed among 41 genomic loci (Fig. 1 and Fig. S1).   

We found a further 35 loci with SNPs showing suggestive evidence of association to QRS 

phenotypes (1×10-8<P<5×10-7); at these loci we identified the SNP with the lowest P-value 
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against any trait and carried out additional replication testing using a combination of in silico 

data and direct genotyping amongst 13,263 individuals of European ancestry (table S1 and 
S2). At 11 of the 35 the lead SNP showed replication (P<0.05 for replication, and became 

significant (P<1x10-8) in combined analysis with their discovery GWA data (table S24). 

Another 11 loci remained suggestive for association (1x10-8<P<5x10-8). Taken together the 

genome-wide and replication data identified 52 loci robustly associated with QRS traits at 

P<1×10-8 (Fig. 1, table S4). 

Genome-wide significance and correction for multiple phenotypes 
Our choice of the statistical threshold (P<1×10-8) was grounded on the guidelines derived 

from studies of the ENCODE regions which suggests that P<5×10-8 is the appropriate 

threshold for genome-wide significance in Europeans19,20, but also was designed to provide 

us additional adjustment for the multiple phenotypes tested. This threshold is conservative, 

also considering our 4 QRS phenotypes are also inter-related: correlation coefficients 

between the phenotype pairs range from r=0.22 to 0.80 (table S25).  

Conditional and joint analysis for the meta-analyses data 
We performed the approximate conditional and joint analysis for the meta-analysis data 

after GC.21  6,654 unrelated individuals with individual-level genotype data selected from 

the ARIC cohort to approximate the LD structure between SNPs. The genotype data of the 

ARIC samples were imputed to HapMap2 by MACH. We used the best guess genotypes 

from imputation. In ARIC we excluded SNPs with imputation r2<0.3 and HWE P<1×10-6.  

There were ~2.7M SNPs in the meta-analysis data. We removed SNPs that are not 

available in the ARIC data after QC, only considered SNPs with an estimated sample size 

of at least 10,000 and retained ~2.5M SNP for the conditional analysis. Assuming that the 

LD correlations between SNPs more than 10Mb away or on different chromosomes are 

zero, we performed a genome-wide stepwise selection procedure to select associated 

SNPs one-by-one at P<1×10-8.  

Directional consistency of associations in non-Caucasians 
To study the potential relevance of our findings in non-Europeans lead SNPs reported in 

Fig. 1 were analysed in 3,603 African Americans (MESA and ARIC) and 4,619 Asian 

Indians (LOLIPOP). To assess whether the observed concordance of the directions of 
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effect in each ethnic group compared to the primary analyses was due to chance we 

performed a binomial draw with null expectation of probability of success 0.5. 

 

Statistics of enrichment of coding SNPS, DHS and TF sites  
We carried out permutation testing by randomly selecting 52 Hapmap2 SNPs matched to our 

sentinel SNPs and counted the number of non-synonymous coding variants in high LD (r2>0.8). 

Matching was based on distance to gene, distance to transcription start site, minor allele 

frequency, and genomic annotation (intronic, intergenic or exonic). This was repeated 1,000 

times to build up an expectation under the null hypothesis. Next we determined the number of 

non-synonymous SNPs in the 52 identified loci and compared it to the simulations of the null 

hypothesis. 

 

DNA functional elements analyses 
We investigated the enrichment of identified variants in regions of covalently modified 

histones as well as chromatin states representative of functional genomic regions predicted 

by the combination of histone modifications in human cardiac tissue mapped by the NIH 

Roadmap Epigenomics Program.22,23 We collected data (bed files) from the Roadmap 

epigenomics project (release 8) for 6 chromatin mark assays (H3K4me1, H3k4me3, 

H3K27me3, H3K27ac, H3K36me3 and H3K9me3) that included cardiac coverage and a 

large number of other cell types22. Only samples with matching input DNA samples were 

included. If replicate experiments were available we aggregated the sequence reads. 

MACS (v1.4) software was used to identify significant peaks (P≤1×10-3) using a fixed DNA 

fragment size of 14624. Two samples could not be called with MACS due to inconsistencies 

in the original data. As a result, this data set included aligned sequence reads of 298 

samples that were called with MACS (table S26). For genomic features we used 

annotations derived from combinations of histone modifications from the Roadmap 

Epigenomics Project using ChromHMM25. For adult left ventricle we had available all 6 

chromatin marks and used the 18-state model. For fetal heart tissue, H3K27ac data was 

unavailable and therefore the 15-state model was used. 

To study cardiac transcription factors we collected data on GATA4, MEF2, NKx2-5, SRF 

and TBX5 from26 mouse hearts; p300 marks in human adult and foetal heart and RNAP2 

from human foetal heart from27; and TBX3, GATA4 and nkx2-5 from the HL-1 cell line28. We 
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used the called peak data as has been described previously. Peaks from mice were lift-over 

to human using the UCSC Genome Browser liftOver tool after extending the regions by 

1kb. Heart enhancers aren't well conserved between human & mouse, so by expanding the 

enhancer before liftOver, we stand a better chance of hitting the true human heart 

enhancer29. To study overlap of SNPs with peak data (DHS, TF or Histones marks) we 

converted genomic coordinates from hg18 to hg19 when appropriate. The DHS’s 

encompassing 349 tissues from the ENCODE and Roadmap epigenomics project were 

processed using the hotspot algorithm30. 

To provide insight into tissue specific regulatory DNA mechanisms influencing QRS indices, 

(Fig. 2) we explored DNAse I hypersensitivity sites histone marks. We assigned the lowest 

P value from the QRS traits to each of the 2.3 M SNPs.. To gain insights into DHS, TFs and 

genomic features (ChromHMM) underlying the 52 QRS loci, we performed carried out 

permutation testing as described above.  

 

Prediction of SNPs perturbing TF recognition sequences 
Potential sites of TF binding were identified by scanning the human genome using position 

weight matrices from four major TF binding motif collections: TRANSFAC31, JASPAR32, 

UniPROBE33, and a published SELEX dataset34. To avoid ascertainment bias for motifs 

better matching the reference allele of common polymorphisms, we created an alternate 

genome to complement the reference GRCh37/hg19 human genome. This alternate 

genome incorporates the non-reference allele at the location of each SNP identified in the 

CEU population of the 1000 Genomes Project35. Both the reference and alternate genomes 

were then scanned for motifs with a threshold P≤10-4 using the program FIMO36. Then, for 

each SNP overlapping a motif, we computed the significance of the perturbation as the log-

odds difference between the two alleles according to the position weight matrix. We 

considered SNPs in a DHS of any cell type affecting a motif with a log-odds difference 

greater than 4 as likely to significantly perturb accessibility. Motif models were mapped to 

gene names as previously described37. 

 

Cardiomyocyte differentiation and analysis 
For gene-expression profiling and localization of histone modifications during development 

we used E14 Tg(Nkx2-5-EmGFP) mouse ES cells38 cultured in feeder-free conditions using 
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standard techniques as reported before39. Directed differentiations and analyses were 

performed as described previously40. RNA-seq was performed on total RNA isolated from 

5×106 cells using TRIzol Reagent and sequencing libraries prepared according to the 

Illumina RNA-Seq library kit. DESeq was used to normalize raw read counts and to analyse 

differential gene expression41 while Useq 7.0 was used thereafter to generate gene-level 

read counts and estimate RPKM (reads per kilobase of exon per million reads mapped)42. 

Only genes with expression values >1 RPKM in at least one cell type were considered for 

analysis. Genome-wide localization of histone modifications (H3K4me3, H3K4me1, 

H3K27me3, and H3K27ac) for each stage was determined via chromatin 

immunoprecipitation, prepaired according to the Young lab protocol43, followed by high 

throughput sequencing. Further details and the analysis pipeline can be found elsewhere39.  

Active and poised enhancers from four mouse cardiomyocyte differentiation time points 

were obtained from a previous study39. We extended mouse enhancer sizes by ±5kb to 

facilitate mapping from mouse to human. Extended mouse enhancers were mapped to 

human using the UCSC liftOver tool with parameters –minMatch=0.1 and –multiple. When 

mouse enhancers mapped to multiple sites on the human genome, the largest mapped 

region was chosen for subsequent analysis.  

We used 1000 Genomes genotype data to identify all SNPs in strong LD (r2 > 0.8) with the 

sentinel SNP. We then quantified the number of GWAS loci that contained a SNP that 

overlapped active or poised human enhancers at the four time points. To assess the 

significance and enrichment of these values, we generated background distribution for the 

number of loci that overlap each set of enhancers by sampling control SNPs spotted on an 

Affymetrix 660W genotyping array that have similar genetic properties (LD block size, minor 

allele frequency, distance to gene) as GWAS SNPs. 

 

Experimental cardiac enhancer studies 
In order to demonstrate the overlap between chromatin interactions and the distribution of 

all variants in this study, we used the negative natural log of the P-value to plot GWAS 

signals to the UCSC Genome Browser. Datapoints (WIG) for TBX3, TBX5 and P300 ChIP-

seq on the Scn5a-Scn10a locus (mm9 chr9:119,307,167-119,613,764) were uploaded to 

the Galaxy Software Interface, transformed into interval files and converted into Hg18 

(chr3:38,465,466-38,820,542) using the Lift-Over Tool.  
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4C templates and primers have been prepared as previously described. For this 

protocol, human ventricular tissue was crushed with a metal douncer in liquid nitrogen. 

Single cell suspensions were obtained by dissociation of tissue with IKA Ultra Turrax T5 

FU, followed by dounce homogenization. Chromatin was crosslinked with 2% formaldehyde 

in PBS with 10% FCS for 10 min at room temperature, nuclei were isolated and cross-

linked DNA was digested with a primary restriction enzyme recognizing a 4-bp restriction 

site (DpnII), followed by proximity ligation. Cross-links were removed and a secondary 

restriction enzyme digestion (Csp6l), followed again by proximity ligation. For all 

experiments, 200 ng of the resulting 4C template was used for the subsequent PCR 

reaction, of which 16 (total: 3.2 µg of 4C template) were pooled and purified for next-

generation sequencing. The PCR products were purified using two columns per sample of 

the High Pure PCR Product Purification Kit (Roche cat. no. 11732676001).  

4C templates were mixed and sequenced simultaneously in one Illumina HiSeq 2000 

lane. The sequence tags generated by the procedure are prefixed by the 4C reading primer 

that includes the DpnII restriction site sequence (described in 4C primer design section). 

The 4C reading primer sequences are separated from multiplexed 4C-seq libraries and the 

suffixes are extracted for further processing. Mapping and filtering of the sequence reads 

was done as previously described44.  

Enhancer candidate regions with major and minor allele for rs6781009 were obtained by 

PCR from human control DNA and cloned into the Hsp68-LacZ reporter vector as 

previously described45. DNA was injected into the pronucleus of fertilized FVB strain eggs, 

which were subsequently transferred into the oviducts of CD-1 pseudo-pregnant foster 

females (Cyagen Biosciences). Approximately 200 injections per construct were performed. 

Embryos were harvested, stained with X-gal to detect LacZ activity. Chi-Square test was 

used to test statistical differences. 

H10 cells, grown in 12-well plates in DMEM supplemented with 10% FCS (Gibco-

BRL) and glutamine, were transfected using polyethylenimine 25 kDa (PEI, Brunschwick) at 

a 1:3 ratio (DNA:PEI). Reporter constructs were generated by ligating the enhancer regions 

with major and minor allele (hg19 chr3:38,584,695-38,586,171 (1.5kb) and 

chr3:38,585,064-38,585,625 (0.6kb)) to pGL2basic+SV40 promoter (control reporter). 

Standard transfections used 1 μg of reporter (or control reporter) vector co-transfected with 

2 ng phRG-TK Renilla vector (Promega) as normalization control. Transfections were 

carried out at least three times and measured in triplo. Luciferase measurements were 
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performed using a Promega Turner Biosystems Modulus Multimode Reader luminometer. 

All data was statistically validated using a Student’s T-Test. 

 

Identification of candidate genes 
We considered the nearest gene and any other gene located within 10kb of the sentinel 

SNP, to be a candidate for mediating the association with the electrocardiographic 

phenotype. We also used coding variant, eQTL and literature analyses to identify candidate 

genes. 

Coding variation: We identified all non-synonymous SNPs (nsSNPs) that were in LD with 

one or more of the sentinel SNPs at r2≥0.8 in HapMap phase 2 CEU or 1000 Genomes 

Project dataset (May 2011 dataset). We considered the gene to be a candidate when the 

non-synonymous and the sentinel SNPs were in LD at r2≥0.8 and with no evidence for 

heterogeneity of effect on phenotype.  

Expression analyses: To identify the possible genes influencing electrocardiographic traits 

at the 52 loci, we examined the association of the sentinel SNPs with eQTL data from 

different sources. 

(1.) Human left ventricular tissue 1: 110 left ventricular samples were collected from non-

diseased human donor hearts.46 RNA-seq libraries were prepared from 1 µg of total 

RNA with the TruSeq RNA Sample Preparation Kit (Illumina). Polyadenylated 

transcripts were enriched, fragmented and cDNA fragments were subsequently 

sequenced on a HiSeq 2000 (Illumina) instrument using 2 x 100 bp PE chemistry. 

Gene expression levels were estimated by counting RNA-seq reads over protein 

coding genes using HT-seq47. Expression levels were normalized across samples by 

a quantile based scaling method48. Normalized expression levels were log 

transformed, and adjusted for covariates (age, sex, RNA quality, library preparation 

date, center) using linear regression in the eQTL analysis. 

(2.) Human left ventricular tissue 2: eQTLs analysis were performed as part of The 

Myocardial Applied Genomics Network(MAGNet: www.med.upenn.edu/magnet). 313 

Left ventricular free-wall tissue samples were harvested at time of cardiac surgery 

from subjects with heart failure undergoing transplantation and from unused donor 

hearts. DNA samples were genotyped using Affymetrix Genome Wide SNP Array 

6.0 and imputed with 1000 Genomes phase 3. RNA was hybridized with Affymetrix 
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Genechip ST1.1 arrays.  The genetic variants were tested for associations with 

15,395 RMA expression levels using a joint effects model taking into account the 

patient group of each sample.  

(3.) Human peripheral blood 1: derived from 1,469 unrelated individuals from the UK and 

the Netherlands.  

(4.) Human peripheral blood lymphocytes RNA-seq from 2,116 individuals. 

SNPs were tested for association with expression of nearby (1MB) genes (at P<0.05 after 

Bonferroni correction for number of SNP-expression associations tested). Where probable 

eQTLs were identified, we used the whole genome SNP data available in these datasets 

(imputed with HapMap phase 2 genotypes), to identify the SNP at the locus most closely 

associated with Transcript level (the Transcript SNP). We then tested whether the sentinel 

SNP and the Transcript SNP were coincident, defined as r2>0.8 with no evidence of 

heterogeneity of effect on phenotype or transcript level (P>0.05). 

GRAIL Analyses: literature analyses were performed using the Gene Relationships Among 

Implicated Loci (GRAIL) algorithm, a statistical tool based on text mining of PubMed 

abstracts to annotate candidate genes within a loci.49 To avoid confounding by subsequent 

GWAS discoveries we used the 2006 data set. Results using the 2012 PubMed data are 

provided in table S13 but were not used for the identification of candidate genes.  

 

Pathway Analysis 
Ingenuity Pathway Analysis (IPA) Knowledge Base March 2015 (Ingenuity Systems, CA, 

USA) was used to explore molecular pathways between proteins encoded by the 67 

candidate genes from the 52 genome-wide significant loci. The genes were entered into the 

Ingenuity database and mapped to its corresponding object in the Ingenuity Knowledge 

Base. Networks were algorithmically generated based on their direct interactions, with a 

maximum size of 35 genes/proteins per network. IPA computes a P-value based on a 

Fisher’s exact test for each network and biological function and/or disease with α=0.05. 

This P-value represents the likelihood of the core genes in a network and biological function 

being found together due to random chance. 
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Gene-expression profiling 
We collected human gene expression data from the Gene Expression Omnibus (GEO). We 

confined analyses to Affymetrix Human Genome U133 Plus 2.0 Arrays. We downloaded 

43,278 raw CEL files, and used RMA for normalization (we ran RMA in eight batches due to 

its size, by randomly assigning the samples to one of these batches). We subsequently 

conducted quality control on the data. We first removed duplicate samples, and 

subsequently conducted a principal component analysis (PCA) on the sample correlation 

matrix. The first principal component (PCqc) on such a matrix describes nearly always a 

constant pattern (dominating the data) which explains around 80-90% of the total variance. 

This pattern can be regarded as probe-specific variance, independent of the biological 

sample hybridized to the array. The correlation of each individual microarray with this 

PCqc can be used to detect outliers, as arrays of lesser quality will have a lower correlation 

with the PCqc. We removed samples that had a correlation R<0.75. After quality control, in 

total, 37,427 samples remained. We used Ensembl to assign the 54,675 different probesets 

to 19,997 different Ensembl genes. If multiple probesets mapped within the same 

Ensembl gene, we averaged the probeset levels. Subsequently, the expression levels 

of each gene were standardized to a mean of zero and standard deviation of one and we 

collapsed the individual gene expression into groups of tissues, by using text-mining of the 

GEO sample descriptions in conjunction with Medical Subject Headings (MeSH) terms for 

the 'Anatomy' group. We subsequently used this tissue expression matrix to ascertain in 

what tissue the genes inside the associated loci were most abundantly expressed, and 

whether the expression of the candidate genes within those tissues were also higher, 

compared to all other genes that were measured in that tissue. 

 

Drosophila melanogaster methods and results 
We carried out permutation testing in a genome-wide phenotypic screen of cardiac specific 

RNAi-silencing of evolutionarily conserved genes under conditions of stress. Details of the 

genome-screen have been published previously.50 We randomly selected sets of 67 genes, 

identified their D. melanogaster orthologs, and counted the number of orthologs with a 

cardiac phenotype in the RNAi screen. This was repeated 1,000,000 times to build up an 

expectation under the null hypothesis (Fig. S10). Next we determined which of the 67 

candidate genes identified in the QRS GWAs had a phenotype in the genome-wide RNAi 
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screen and calculated the enrichment compared to the mean observed in simulations of the 

null hypothesis. We found that the 67 candidate genes were 2.3-fold enriched for stress-

induced cardiac death (9 genes, P=1.84×10-2; Fig. S10). Cardiac abnormalities in D. 

melanogaster had been reported for 3 of these 9 genes (Mhc/MYH7B51, Slit/SLIT252, and 

EcR/NR1H53) and a role in cardiac genesis for one (Hand/HAND154). Another gene (TTN) is 

a well-known cardiomyopathy gene in humans55 

To illustrate that prioritized genes may play a critical role in heart development we 

tested 4 (CG4743/SLC25A26, Fhos/FHOD3, Cka/STRN, NACα/NACA) genes with 

unknown cardiac function by performing heart-specific RNAi knockdown with the cardiac 

Hand4.2-Gal4 driver line. We also re-tested EcR/NR1H, which has multiple homologous 

genes in mammals, as well as Hand/HAND1 as this gene was only tested in as a full-

knockout in early development but not in adult D. melanogaster heart using cardiac specific 

knockdown. Adult hearts of EcR/NR1H, NACα/NACA, Hand/HAND1 and Cka/STRN RNAi 

showed severe cardiac defects (Fig. 4). Knockdown of Hand/HAND1 and Cka/STRN both 

had a reduced cardiac heart rate. While Hand/HAND1 knockdown hearts appeared 

structurally normal, we observed severely disorganized and misoriented myofibrillar 

arrangements within the cardiomyocytes in Cka/STRN RNAi hearts (Fig. 4), which caused 

a reduction in diastolic diameters and contractility. NACα/NACA mutants had the most 

severe phenotype with a complete loss of cardiac tissue beginning at eclosion, while the 

hearts of NACα mutant larvae were still intact, indicating a critical role for NACA during 

cardiomyocyte remodelling. RNAi-mediated knockdown of CG4743/SLC25A26 and 

Fhos/FHOD3 did not reveal cardiac phenotypes. We also expanded on gene-by-gene 

analysis and identified further novel genes causing cardiac abnormalities. Of the 58 (67 

minus 9 mentioned above) remaining candidate genes, 12 had no reported or otherwise 

discernible D. melanogaster homologs, while the other 46 genes had a total of 112 

homologues (DIOPT score56 ≥ 1). 27 human genes had 32 Drosophila orthologues with a 

DIOPT score 5-10, i.e. their homology was confirmed by 5-10 databases. Of these D. 

melanogaster homologues, we tested 21 genes for a potential cardiac function. 

Interestingly, cardiac knockdown of 6 of these genes caused cardiac arrhythmia and/or 

structural/contractility defects increasing the total number to 10 genes (out of 30 genes 

tested) with impaired cardiac structure or function (table S17). 
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Experimental procedures: Flies were reared on standard cornmeal food at 25°C. For 

cardiac-specific knockdown we used the Hand4.2-Gal4 driver line50,57, which expresses in 

cardiac and pericardial cells from the late embryo throughout all stages of the life cycle58. 

Hand4.2-Gal4 virgin females were crossed to male flies carrying RNAi constructs from the 

VDRC collection59 targeting the genes to be tested. Female progeny from this cross was 

collected and aged for 3 weeks, after which they were dissected60. In brief, flies were 

immersed in artificial hemolymph (AHL) and abdomens were cut open ventrally and the 

intestine removed, which exposes the dorsally located beating heart tube. Specimen were 

allowed to rest for 15min in oxygenized AHL and then filmed at 120fps, using a Leica DM 

microscope and a Hamamatsu C9300 camera. Heart beat parameters were analysed using 

custom made software (SOHA57,61).  After filming, the hearts were fixed and stained 

according to62, and images were taken using a Zeiss Apotome. Fig.s were assembled using 

ImageJ63 and Photoshop (Adobe). 

 

Mus musculus models 
We systematically searched the international database resource for the laboratory mouse 

(MGI-Mouse Genome Informatics) and manually curated Mammalian Phenotypes (MP) 

identifiers related to abnormal size and/or morphology of the heart, left ventricle, cardiac 

septum, cardiomyocyte, heart development and/or abnormal cardiac depolarisation and/or 

cardiac output. We identified 154 MP’s (table S27) of a total of 9,338 available MPs. We 

selected random sets of 67 human genes, identified their mouse orthologs, and counted the 

number of orthologs with a kock-out mice model available which had been annotated with 

one or more of the identified 154 MPs. This was repeated 1,000,000 times to build up an 

expectation under the null hypothesis (Fig. S10). Next we determined which of the 67 

candidate genes identified in the QRS GWAs had one or more of the identified 154 MPs 

and calculated the enrichment compared to the mean observed in simulations of the null 

hypothesis. Of the 67 candidate genes, of which 18 (40%) revealed a cardiac phenotype 

(table S16). This represents a 5.2-fold enrichment compared to randomly matched sets of 

67 genes (P=3.4×10-14; Fig. S10). 
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Data-driven Expression-Prioritized Integration for Complex Traits 
(DEPICT).  
DEPICT systematically identifies the most likely causal gene at a given associated locus, 

tests gene sets for enrichment in associated SNPs, and identifies tissues and cell types in 

which genes from associated loci are highly expressed (see Pers et al.64 for a detailed 

description of the method). First, DEPICT assigns genes to associated SNPs using LD r2 > 

0.5 distance to define locus boundaries, merges overlapping loci and discards loci mapping 

within the extended major histocompatibility complex region (chromosome 6, base pairs 

25,000 – 35,000). Next, DEPICT prioritizes genes within the associated loci based on 

genes functional similarity to genes from other associated loci within the same GWAS 

(genes that are similar to genes from other loci obtain low prioritization P values), and 

adjusts for gene length bias as well as other potential confounders by use of simulated 

GWAS results. There can be several prioritized genes in a given locus. Next, DEPICT 

conducts gene set enrichment analysis by testing whether genes in associated loci are 

enriching for reconstituted versions of known biological pathways, gene sets as well as 

protein complexes. Leveraging the guilt by association hypothesis that genes co-expressing 

with genes from a given gene set are likely to be part of that gene set (See Cvejic et al.65 for 

details), the gene set reconstitution is accomplished by identifying genes that were co-

expressed with genes in a given gene set based on a panel of 77,840 gene expression 

microarrays. Gene sets from the following repositories were reconstituted: 5,984 protein 

complexes originating from 169,810 high-confidence experimentally-derived protein-protein 

interactions66; 2,473 phenotypic gene sets derived from 211,882 gene-phenotype pairs from 

the Mouse Genetics Initiative67; 737 Reactome database pathways68; 184 KEGG database 

pathways69; and 5,083 Gene Ontology database terms70. Finally, DEPICT conducts tissue 

and cell type enrichment analysis, by testing whether genes in associated loci are highly 

expressed in microarray-based gene expression data covering 209 Medical Subject 

Heading annotations (37,427 Affymetrix U133 Plus 2.0 Array samples are used for this 

analysis). See Wood et al71. , Geller et al72. and van der Valk 

et al.73 for previous applications of DEPICT. For this work we first used the PLINK software 

tool18, to clump all SNPs with association P value < 1 x 10-5 as input (parameters:  ‘--clump-

p1 1e-5 --clump-kb 500 --clump-r2 0.05’) resulting in 202 SNPs. DEPICT was run using 202 

SNPs as input (resulting in the 149 independent loci using the DEPICT locus definition and 
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331 genes in total). The gene prioritization, gene set enrichment and tissue/cell type 

enrichment analyses were run using the default settings in DEPICT. 
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Cohorts methods 
 
AGES:  The Age, Gene/Environment Susceptibility (AGES) Reykjavik Study was initiated to 

examine genetic susceptibility and gene/environment interaction as these contribute to 

phenotypes common in old age, and represents a continuation of the Reykjavik Study 

cohort begun in 1967 and is comprised of 5776 randomly recruited survivors from the 

original cohort. QRS interval duration was automatically measured from 12-lead 

electrocardiograms using the Marquette 12 SL analysis program (General Electric 

Marquette Medical Division, Milwaukee, Wisconsin, USA). 

 
ARIC: The Atherosclerosis Risk in Communities study (http://www.cscc.unc.edu/aric/) 

includes 15,792 men and women from four communities in the United States (Jackson, 

Mississippi; Forsyth County, North Carolina; Washington County, Maryland; suburbs of 

Minneapolis, Minnesota) enrolled in 1987–1989 and prospectively followed.  ECGs were 

recorded at baseline using MAC PC ECG machines (Marquette Electronics) and processed 

initially by the Dalhousie ECG program in a central laboratory at the EPICORE Center 

(University of Alberta). Processing was later repeated for the present study using the GE 

Marquette 12-SL program (2001 version) at the EPICARE Center (Wake Forest 

University).  All ECGs were visually inspected for technical errors and inadequate quality. 

QRS voltage was calculated from parameters automatically measured from baseline ECGs. 

 

BRIGHT: The MRC BRIGHT study (http://www.brightstudy.ac.uk/) comprises 2000 severely 

hypertensive probands ascertained from families with multiplex affected sibships or as 

parent-offspring trios. Case ascertainment and phenotyping has been described previously. 

Briefly, cases have BP readings ≥150/100 mmHg based on one reading or ≥145/95 mmHg 

based on the mean of three readings. Twelve-lead ECG recordings (Siemens-Sicard 440; 

http://www.brightstudy.ac.uk/info/sop04.html), which produces an automated measurement 

of the QRS voltage and duration, were available for all subjects. All data were transferred 

from each recruitment centre by electronic modem to electrophysiologists from the West of 

Scotland Primary Prevention Study (Professor Peter MacFarlane) for central reporting. All 

individuals included in the analysis were of white British ancestry (up to level of 

grandparents). 
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CHS: The CHS is a population-based cohort study of risk factors for CHD and stroke in 

adults ≥65 years conducted across four field centers.74 The original predominantly 

Caucasian cohort of 5,201 persons was recruited in 1989-1990 from random samples of the 

Medicare eligibility lists; subsequently, an additional predominantly African-American cohort 

of 687 persons were enrolled for a total sample of 5,888. DNA was extracted from blood 

samples drawn on all participants at their baseline examination in 1989-90. In 2007-2008, 

genotyping was performed at the General Clinical Research Center's 

Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina 370CNV BeadChip 

system on 3980 CHS participants who were free of CVD at baseline, consented to genetic 

testing, and had DNA available for genotyping. Participant-level exclusions: A total of 1908 

persons were excluded from the GWAS study sample due to the presence at study 

baseline of coronary heart disease, congestive heart failure, peripheral vascular disease, 

valvular heart disease, stroke or transient ischemic attack or lack of available 

DNA. Because the other cohorts were predominantly white, the African American 

participants were excluded from this analysis to reduce the possibility of confounding by 

population structure. Samples were excluded from analysis for sex mismatch, discordance 

with prior genotyping, or call rate < 95%. To date, genotyping has been successful among 

3,271 of 3,373 European Ancestry participants; the 2642 of these participants with available 

QRS voltage phenotypes who satisfied the phenotypic exclusion criteria constitute the CHS 

sample for this study. Genotyping Detail: In CHS, genotyping was performed at the General 

Clinical Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the 

Illumina 370CNV BeadChip system. Genotypes were called using the Illumina BeadStudio 

software as above. QRS Voltage Duration: Study electrocardiograms were recorded using 

MAC PC ECG machines (Marquette Electronics, Milwaukee, Wisconsin) in all clinical 

centers. ECGs were initially processed in a central laboratory at the EPICORE Center 

(University of Alberta, Edmonton, Alberta, Canada) and during later phases of the study, at 

the EPICARE Center (Wake Forest University, Winston-Salem, North Carolina). All ECGs 

were visually inspected for technical errors and inadequate quality. QRS interval was 

measured using the baseline ECG for eligible subjects. Initial ECG processing was done by 

the Dalhousie ECG program,  and processing was later repeated with the 2001 version of 

the GE Marquette 12-SL program (GE 342 Marquette, Milwaukee, Wisconsin).  
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Cilento: Cilento study is a population-based study that includes 2,137 subjects from 

isolated populations located in the area of the National Park of Cilento e Vallo di Diano, 

South Italy.  The ECG and genotype data were available for a subset of 629 individuals. 

Standard echocardiography was used to assess the ventricular function and to obtain the 

ECG measurements included the QRS voltage duration. The study design was approved by 

the ethics committee of Azienda Sanitaria Locale Napoli 1. The study was conducted 

according to the criteria set by the declaration of Helsinki and each subject signed an 

informed consent before participating to the study. 

 

ERF: The Erasmus Rucphen Family study is comprised of a family-based cohort  

embedded in the Genetic Research in Isolated Populations (GRIP) program in the 

southwest of the Netherlands75. The aim of this program is to identify genetic risk factors for 

the development of complex disorders. In ERF, twenty-two families that had a large number 

of children baptized in the community church between 1850 and 1900 were identified with 

the help of detailed genealogical records. All living descendants of these couples, and their 

spouses, were invited to take part in the study. Comprehensive interviews, questionnaires, 

and examinations were completed at a research center in the area; approximately 3,200 

individuals participated. Examinations included 12 lead ECG measurements. 

Electrocardiograms were recorded on ACTA electrocardiographs (ESAOTE, Florence, Italy) 

and digital measurements of the QRS intervals were made using the Modular ECG Analysis 

System (MEANS). The QRS detector of MEANS operates on multiple simultaneously 

recorded leads, which are transformed to a detection function that brings out the QRS 

complexes among the other parts of the signal. MEANS was used to measure QRS 

complex duration and the three LVH proxies.  Data collection started in June 2002 and was 

completed in February 2005. In the current analyses, 1,722 participants for whom complete 

phenotypic, genotypic and genealogical information was available were studied.  

 

FHS: The Framingham Heart Study (http://www.framinghamheartstudy.org/ ) is a 

community-based, longitudinal cohort study comprising three generations of individuals in 

multigenerational pedigrees and additional unrelated individuals. The current study included 

individuals from Generation 1 (11th examination), Generation 2 (1st examination) and 

Generation 3 (1st examination). In FHS, paper electrocardiograms recorded on Marquette 

machines were scanned and digital caliper measurements were made using proprietary 
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software (eResearchTechnology, generations 1 and 2) or using Rigel 1.7.2. (AMPS, LLC, 

New York, NY, USA, generation 3). The QRS duration was measured from the Q-onset to 

S-offset in two cardiac cycles from lead II and averaged. 

 

FVG: The Friuli Venezia Giulia Project was initiated in 2008.  All population was invited to 

partecipate. The cohort included 1,739 people.  At the moment we have genotypied 1,378 

samples. Our cardiologists enrolled 1,548 unselected inhabitants, the people with EKG and 

genotype data are : 1,269. A free screening (anamnesis, electrocardiogram, 

echocardiogram) of the whole population was offered by a team of three cardiologists. A 

consent form either for clinical and genetic studies has been signed by each participant in 

the study. The method of measurement of QRS voltage duration: the QRS duration have 

been measured in milliseconds using the automatic refertation powered by the 

electrocardiographer used for the recordings (Mortara Instrument ELI 250). QRS voltages 

have been measured in millimeters by two cardiologists. The three phenotypes have been 

evaluated and calculated by the same cardiologists. 

 

InChianti: The InCHIANTI study is a population-based epidemiological study aimed at 

evaluating the factors that influence mobility in the older population living in the Chianti 

region in Tuscany, Italy (http://inchiantistudy.net). The details of the study have been 

previously reported.76 Briefly, 1,616 residents were selected from the population registry of 

Greve in Chianti (a rural area: 11,709 residents with 19.3% of the population greater than 

65 years of age), and Bagno a Ripoli (Antella village near Florence; 4,704 inhabitants, with 

20.3% greater than 65 years of age). The participation rate was 90% (n=1453), and the 

subjects ranged between 21-102 years of age. Overnight fasted blood samples were for 

genomic DNA extraction.77 The study protocol was approved by the Italian National Institute 

of Research and Care of Aging Institutional Review and Medstar Research Institute 

(Baltimore, MD).  

 

KORA F3 and S4: The KORA study is a series of independent population-based 

epidemiological surveys of participants living in the city of Augsburg, Southern Germany, or 

the two adjacent counties. All survey participants are residents of German nationality 

identified through the registration office and aged between 25 and 74 years at recruitment. 

The baseline survey KORA S3 was conducted in the years 1994/95 and KORA S4 in 1999-
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2001. 3,006 participants from KORA S3 were reexamined in a 10-year follow-up (KORA F3) 

in the years 2004/05. Genomewide data for the analysis of the length of the QRS interval is 

available for random subsets of 1,644 persons from KORA F3 and 1,814 study participants 

from KORA S4. In both studies, 12-lead resting electrocardiograms were recorded with 

digital recording systems (F3: Mortara Portrait, Mortara Inc., Milwaukee, USA, S4: Hörmann 

Bioset 9000, Hörmann Medizinelektronik, Germany).78,79 

 

KORCULA:  The KORCULA study sampled Croatians from the Adriatic island of Korcula, 

between the ages of 18 and 88. The fieldwork was performed in 2007 in the eastern part of 

the island, targeting healthy volunteers from the town of Korčula and the villages of 

Lumbarda, Žrnovo and Račišće. Mortara ELI 350 was used in ECG recording.   

 

LifeLines: LifeLines is a multi-disciplinary prospective population-based cohort study 

examining in a unique three-generation design the health and health-related behaviours of 

165,000 persons living in the North East region of The Netherlands. It employs a broad 

range of investigative procedures in assessing the biomedical, socio-demographic, 

behavioural, physical and psychological factors which contribute to the health and disease 

of the general population, with a special focus on multimorbidity and complex genetics. 

Details of the protocol have been described elsewhere (https://www.lifelines.nl/lifelines-

research/news). Standard 12-lead electrocardiograms were recorded with CardioPerfect 

equipment (Cardio Control; currently Welch Allyn, Delft, The Netherlands) and digital 

measurements of the QRS intervals were extracted. 

 

LOLIPOP:  The London Life Sciences Population study (www.lolipopstudy.org) is an 

ongoing population-based cohort study of ~30,000 individuals (18,000 Indian Asians and 

12,000 European white men and women), aged 35-75 years and recruited from the lists of 

58 general practitioners in West London, United Kingdom. A nurse-led interviewer-

administered questionnaire was used to collect data on medical history, family history, 

current prescribed medications and cardiovascular risk factors. Physical assessment 

included measurements of height, weight, waist and hip circumference as well as blood 

pressure. In addition a 12 lead ECG was recorded using GE Marquette CARDIOSOFT 

software.  Following an 8 hour fast, blood was collected for biochemical analysis, and whole 

blood taken for extraction of DNA. Subgroups of European White (EW) participants were 
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genotyped on 3 different GWAS platforms – Affymetrix (EWA), Perlegen (EWP) and 

Illumina610 (EW610) arrays.80,81 

 

MESA: http://www.mesa-nhlbi.org/Mesa-Internal/MESASHARe.asp. Standard 12-lead 

ECGs were digitally acquired using a Marquette MAC 1200 ECG machines (Marquette 

Electronics, Milwaukee, WI) at 10 mm/mV calibration and speed of 25 mm/s. ECGs were 

processed in a central laboratory at the EPICARE Center (Wake Forest University, 

Winston-Salem, NC). All ECGs were visually inspected for technical errors and inadequate 

quality. ECG processing was done by the 2001 version of the GE Marquette 12-SL program 

(GE Marquette, Milwaukee, WI). QRS interval and voltage measures were calculated 

automatically. 

 

MICROS: The MICROS study is part of the genomic health care program 'GenNova' and 

was carried out in three villages of the Val Venosta on the populations of Stelvio, Vallelunga 

and Martello. This study was an extensive survey carried out in South Tyrol (Italy) in the 

period 2001-2003. Study participants were volunteers from three isolated villages located in 

the Italian Alps, in a German-speaking region bordering with Austria and Switzerland. Due 

to geographical, historical and political reasons, the entire region experienced a prolonged 

period of isolation from surrounding populations. Genotyping was performed on just under 

1,400 participants with 1,334 available for analysis after data cleaning. Information on 

participants’ health status was collected through a standardized questionnaire and clinical 

examinations, including digitized ECG measurements (Mortara Portrait, Mortara Inc., 

Milwaukee, USA). Individuals with identified U-waves were excluded from analysis. The 

Mortara portrait determines QRS complex by a proprietary algorithm82. Laboratory data 

were obtained from standard blood analyses.83 

 

ORCADES:  The Orkney Complex Disease Study (ORCADES) is an ongoing family-based, 

cross-sectional study in the isolated Scottish archipelago of Orkney. Genetic diversity in this 

population is decreased compared to Mainland Scotland, consistent with high levels of 

endogamy historically. Participants included here were aged 18-92 years and came from a 

subgroup of ten islands. The Cardioview ECG device was used in the phenotyping. 
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PREVEND: The Prevention of REnal and Vascular ENd stage Disease (PREVEND) study 

is an ongoing prospective study investigating the natural course of increased levels of 

urinary albumin excretion and its relation to renal and cardiovascular disease. Inhabitants 

28 to 75 years of age (n=85,421) in the city of Groningen, The Netherlands, were asked to 

complete a short questionnaire, 47% responded, and individuals were then selected with a 

urinary albumin concentration of at least 10 mg/L (n = 7,768) and a randomly selected 

control group with a urinary albumin concentration less than 10 mg/L (n = 3,395). Details of 

the protocol have been described elsewhere (www.prevend.org). Standard 12-lead 

electrocardiograms were recorded with CardioPerfect equipment (Cardio Control; currently 

Welch Allyn, Delft, The Netherlands) and digital measurements of the QRS intervals were 

extracted.  

 

PROSPER: The protocol of PROSPER has been described elsewhere.84 PROSPER is a 

prospective multicenter randomized placebo-controlled trial to assess whether treatment 

with pravastatin diminishes the risk of major vascular events in elderly individuals. Between 

December 1997 and May 1999, subjects were screened and enrolled in Scotland 

(Glasgow), Ireland (Cork), and the Netherlands (Leiden). Men and women aged 70-82 

years were recruited if they had pre-existing vascular disease or increased risk of such 

disease because of smoking, hypertension, or diabetes. A total number of 5804 subjects 

were randomly assigned to pravastatin or placebo. In this study, the predefined endpoints 

all-cause mortality and mortality were evaluated due to vascular events and coronary heart 

disease death. Mean follow-up was 3.2 years (range 2.8-4.0) and 604 (10.4%) patients died 

during the study.85 The GWAS was performed in a random sub-sample of 5244 subjects. 

 

RS: The Rotterdam Study is a prospective population-based cohort study comprising 7,983 

subjects aged 55 years or older (RS-I), which started in 1990. In 2000-2001, an additional 

3,011 individuals aged 55 years or older were recruited (RS-II). In the RS-I and RS-II, 

electrocardiograms were recorded on ACTA electrocardiographs (ESAOTE, Florence, Italy) 

and digital measurements of the QRS intervals were made using the Modular ECG Analysis 

System (MEANS). The QRS detector of MEANS operates on multiple simultaneously 

recorded leads, which are transformed to a detection function that brings out the QRS 

complexes among the other parts of the signal. 
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Sardinia:  The SardiNIA GWAS examined a total of 5,014 related individuals participating 

in a longitudinal study of aging-related quantitative traits in the Ogliastra province of the 

Sardinia region, Italy. The study has been described in detail previously86. Included 

individuals had four Sardinian grandparents and were selected without regard to their 

phenotypes. The ECG was recorded on paper (ECG machine Cardiette 600) with the 

participant at rest. Images of paper records were digitalised and voltages were manually 

measured using ImageJ software. 

 

SHIP: The Study of Health in Pomerania (SHIP, www.medizin.uni-

greifswald.de/cm/fv/english/ship_en.html) is a longitudinal population-based cohort study in 

West Pomerania, a region in the northeast of Germany.  From the total population 

comprising 212,157 inhabitants in 1995, a two-stage stratified cluster sample of adults aged 

20 to 79 years was drawn. From the net sample of 6265 eligible subjects, 4308 subjects 

(2192 women) of Caucasian origin participated in the baseline examination, SHIP-0 

(response 68.8%). All participants gave written informed consent. The study conformed to 

the principles of the Declaration of Helsinki and was approved by the Ethics Committee of 

the University of Greifswald. For the present analyses both electrocardiographic and 

genotyping data were available from 2978 participants of the SHIP baseline cohort without 

exclusion criteria.  

QRS intervals and voltages in SHIP were measured from digitally stored 

electrocardiograms (Personal 120LD, Esaote, Genova, Italy) using MEANS according to 

the method described above for the Rotterdam Study (RS).  

 

SPLIT: The SPLIT study samples Croatians from the town of Split, between the ages 18 

and 85. The sampling started in 2008, and continues throughout 2010. Mortara ELI 350 

was used in ECG recording. 

 

Twins_UK: The Twins UK Registry comprises unselected, mostly female volunteers 

ascertained from the general population through national media campaigns in the UK (1; 

www.twinsuk.co.uk). Means and ranges of quantitative phenotypes in Twins UK were 

similar to an age-matched singleton sample from the general population. Zygosity was 

determined by standardized questionnaire and confirmed by DNA fingerprinting. Written 

informed consent was obtained from all participants before they entered the studies, which 
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were approved by the local research ethics committee. Using linear regression analysis, we 

adjusted QRS Voltage product for age, sex, height, and body mass index. The residuals 

were used for further analyses. Association between QRS Voltage product residuals and 

autosomal SNPs was tested with an F-test in SNPTEST version 1.1.4 using an additive 

model and the proper option to account for the uncertainty of the genotypes that were 

imputed. As the TwinsUK cohort data consisted partly of dizygotic twins, the variances of 

the regression coefficients were corrected for the sibship relations using the Huber-White 

method for robust variance estimation in R.  

 

YFS: The Cardiovascular Risk in Young Finns (YFS) is a population-based 27 year follow 

up-study  (http://med.utu.fi/cardio/youngfinnsstudy/). The first cross-sectional survey was 

conducted in 1980, when 3,596 Caucasian subjects aged 3-18 years participated. In 

adulthood, the latest 27-year follow-up study was conducted in 2007 (ages 30-45 years) 

with 2,204 participants. The study cohort for the present analysis comprised subjects who 

had participated in the ultrasound study in 2007 and had other risk factor data.87 Method of 

measurement of QRS voltage duration: GE CardioSoft Ver 4.2 (Tampere cohort, 

approximately ½ of the samples) and GE MUSE Ver 7.1.0 (Turku cohort, approximately ½ 

of the samples) 
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1. Table S1. Characteristics of participants in genome-wide and replication cohorts 

Cohort N, 

participa

nts with 

EKG and 

genotype 

data 

N, 

particip

ants 

after 

exclusio

n 

Sex,

(% 

women) 

Age, years

(mean ± SD) 

Age

(range) 

Height, cm 

(mean ± SD) 

BMI, kg/m2

(mean ± SD) 

Hypertension

( %) 

Diabetes 

mellitus 

( %) 

Heart rate, 

bpm 

(mean ± SD) 

Discovery    

AGES 3,043 2,249 64 76.0±5.4 66-95 166±9 27.0±4.5 78 10 66.6±11.4

ARIC 8,961 7,414 55 54.1±5.7 45-64 168±9 27.1±4.8 26 8 66.5±9.9 

Bright 1,021 882 62 55.8±11.3 21-89 166±9 27.6±3.8 100 0 63±11 

Cilento 629 422 60 52.8±18.6 14-93 161±10 26.6±4.5 42 8 73.4±13.4 

CHS 3,223 2,642 64 72.0±5.1 65-94 164±9 26.2±4.5 52 11 64.3±10.2 

ERF 2,042 1,722 60 47.1±14.1 18-85 167±9.2 26.7±4.6 48 4 63.0±10.5 

FHS 4,095 3,869 54 40±9 19-72 170±9 26.9±5.5 16 3 62±10

FVG 1,269 1,001 59 48.3±17.6 6-90 168 ± 10 24.9±4.5 48 6 66.1±11.7

Inchianti 1,073 861 57 66.1±15.4 21-95 160+10 27.1+4.1 42 9 69.0+11.6 

KORA S4 1,786 1,491 56 53.5±8.7 25-74 167±9 27.6±4.6 32 3 65.4±10.2 

KORAF3  1,644 1,393 52 61.4 35-79 167 27.9 42 9 64.1 

Korcula 428 376 63 54.0±13.2 18-88 168 ± 9 27.9±4.2 29 6 65.6±9.6 

LifeLines 8017 7,818 58 47.5±11 18-89 175±10 26.2±4.2 23 2 68.2±11.4 
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LOLIPOP_EW610 785 762 30 55.9±9.9 35-75 172±9 27.4±4.6 8 8 65.4±11.2 

LOLIPOP_EW_P 263 181 0 56.1±8.9 35-67 176±7 29.1±5.5 18 14 67.9±12.4 

LOLIPOP_EW_A 432 158 42 52.2±12.1 35-75 170±9 29.0±5.8 9 13 66.6±11.4 

MESA 2,495 1,735 62 62.2±10.1 44-84 167±9 27.5± 5.1 37 5 63.2±9.3 

MICROS 1,090 604 49 40.5±14.6 18-83 168±9 25.1±4.4 33 4 68.2±11.6

Orcades 719 690 55 53.3±15.7 18-92 167±9 27.6±4.9 25 3 60.7±10.0

PREVEND 3,880 3,513 52 48.8±12.2 28-75 173±9 26.0±4.3 31 4 68.9±12.3 

PROSPER 5,135 3,639 57 75.2±3.3 70-83 165±9 26.8± 4.2 64 10 66.6±11.6 

RS1 4,396 3,043 63 67.4±8.4 55-99 167±9 26.2±3.5 53 9 70.5±11.8 

RS2 1,806 1,406 59 64.1±7.4 55-95 168±9 27.2±4.0 59 10 69.6±11.0 

RS3 2,077 1,800 59 55.8±5.5 45-97 171±9 27.6±4.6 46 NA 69.4±10.3 

Sardinia 5,014 4,372 43 42.3±17.3 81.80 160±9 25.1±4.6 20 15 67.2±11.3

SHIP 3,548 2,978 53 48.1±15.8 20-81 169±9 27.0±4.8 50 6 72.0±12.7

Split 433 390 63 50.0±15.0 18-85 171±9 26.6±4.2 25 4 65.7±10.6 

Twins UK 2,637 2,396 95 51.8±12.5 18-84 163±7 25.6±4.5 15 2 66.9±10.4 

YFS 479 448 55 38.6±5.1 30-47 172±9 26.4±4.5 4 1 68.9±10.5 

 

Replication 

          

SMART 5,676 4,721 39 54.0±12.9 17-82 172±9 26.7±4.5 30 20 66.0±13.0

PREVEND 3,677 3,295 54 48.5±12.5 28-75 173±9 26.0±4.1 14 1 69.3±10.4

LifeLines 5,264 5,247 61 50.1± 11.8 21-90 174±9 26.6± 4.2 27 4 68.2±11.4
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Table S1 Continued 

 

Cohort QRS 

interval, 

ms 

(mean ± 

SD) 

QRS 

interval, 

ms 

(range) 

12 lead sum 

product, 

mm.ms 

(mean ± SD) 

12 lead sum 

product, 

mm.ms 

(range) 

Cornell 

voltage 

product, 

mm.ms (mean 

± SD) 

Cornell 

voltage 

product, 

mm.ms 

(range) 

Sokolow-

Lyon 

product, 

mm.ms 

(mean ± SD) 

Sokolow-Lyon 

product, 

mm.ms 

(range) 

Discovery         

AGES 90±11 60-120 12819±3569 4349-33784 1424±582 167-4421 1962±694 385-6278 

ARIC 96±9 61-120 11700±3139 3357-32194 1073±488 27-4450 2019±648 44-6113 

Bright 93±10 66-120 12585±3446 4731-27459 1736±560 199-4205 2159±715 570-5021 

Cilento 106±9 80-120 6444±2485 1201-16281 407 ± 284 17-1344 1067±477 95-2897 

CHS 88±10 62-120 11580±3167 4093-24295 1149±494 0-3062 1955±662 413-4927

ERF 97±10 68-120 13733±3692 4993-39250 1167±495 89-3853 2320±682 884-5289

FHS 87±9 60-120 NA NA 937±465 60-3900 NA NA 

FVG 96±11 72-149 12615±3644 4851-32540 960±584 46-4896 2086±670 630-4900 

Inchianti 88+13 52-120 NA NA 1206±613 39-4531 1907±691 374-4718 

KORA S4 90±8 64-120 12798±3275 5101-27061 1165±505 168-3371 2097±664 493-5292 

KORA F3 92 60-120 NA NA NA NA NA NA 

Korcula 96±9 76-119 13807±3580 6478-25645 1509± 651 49-5848 2236±676 93-4557

LifeLines_R2 95±12 57-145 14177±3846 4600-29730 1067±546 68-3293 2027±670 298-4708

LifeLines_R3 94±12 57-136 13923 ±3636 4042-25849 884±470 28-2543 2023±625 146-4093 
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LOLIPOP_EW610 93±10 66-119 NA NA 1236±552 102-4144 1983±700 420-4802 

LOLIPOP_EW_P  95±10 70-118 NA NA 1347±658 100-4264 2055±756 624-5280 

LOLIPOP_EW_A 92±11 64-118 NA NA 1312±604 46-3168 1902±783 440-4644 

MESA 89±7 68-120 10255±2768 3450-25408 973±434 28-2910 1765±586 356-5308 

MICROS 96±13 71-229 14030±4041 4509-27550 1211±629 17-3357 2210±732 681-5194

Orcades 90±11 60-120 12435±3356 5152-29700 1335±659 80-5530 2090±626 80-4655

PREVEND 96±11 56-120 14179±3735 5173-34860 1095±552 0-4020 2250±682 560-5973 

PROSPER 93±11 62-120 1441±1475 192-54616 1819±689 0-6301 2204±810 0-6821 

RS1 96±11 66-120 14072±3498 6043-29491 1322±528 43-4119 2336±703 642-5669 

RS2 97±11 70-120 14218±3102 6860-28616 1313±483 54-3837 2315±679 986-5690 

RS3 97±11 62-120 13852±3284 5368-26053 1187±510 48-3543 2288±682 481-6141 

Sardinia 90±12 50-119 NA NA 1132±593 55-5175 1981±798 483-6237

SMART    

SHIP 97±11 60-120 13872±3497 6058-30311 1167±572 50-4025 2134±656 546-6228 

Split 97±17 70-120 12326±3754 536-27280 1442±706 58-5822 2124±676 92-4565 

Twins UK 87±8 58-119 NA NA 887±440 68-4508 1953±610 624-5900 

YFS 93±10 74-120 14031±3850 7060-25857 1163±537 88-3534 2282±703 1002-4820 

 

Replication 

        

SMART 94±10 60-120 18470±5612 6006-36678 1438±590 0-3549 2503±862 570-5599

PREVEND 98±11 41-132 14652±3427 5147-28241 1100±513 0-3439 2325±667 614-5570

LifeLines 94±13 60-135 13753±3594 4042-25586 876±463 0-2497 1983 ± 609 146-3962 
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2. Table S2. Summary of study genotyping methods in the genome-wide association cohorts 
 

Cohort Array Genotype 

calling 

software 

SNP 

call 

rate 

excl. 

SNP 

MAF 

excl. 

pHWE 

excl. 

Imputation 

software 

NCBI 

Build 

for 

imput

ation 

GWAS 

statistical 

analysis 

Related 

individual

s (yes/no) 

Familial 

adjustment 

method (if 

applicable) 

AGES Illumina CNV370 Bead Studio <97% <1% <10e-6 MACH 1 v1.0.16 36 ProbABEL, R No NA

ARIC Affymetrix 6.0 Birdseed <95% <1% <10e-5 MACH 1 v1.0.16 36 ProbABEL No NA

Bright Affymetrix 500K CHIAMO <95% None None IMPUTE v.1 36 SNPTEST No NA 

Cilento 370k Illumina Genome 

Studio  

<95% 5% None MACH v1.0.16.a 36.22 GenABEL, 

ProbABEL, R 

Yes Mmscore in 

ProbABEL 

CHS Illumina CNV370 Bead Studio <97% None <10e-5 BIMBAM 36 R No NA 

ERF Illumina 318K, 

370K, Affy 250K 

Bead Studio <98% None <10e-6 MACH v1.0.15 36 GenABEL, 

ProbABEL, R 

Yes Kinship package 

in R 

FHS Affymetrix 500K, 

50K MIP 

BRLMM <97% <1% <1e-6

 

MACH v1.0.15 36.2 Linear mixed 

effect models  

Yes Linear mixed 

effect models  

FVG Illumina 370K Bead Studio 90% <5% <0.05 MACH 36 GenABEL Yes Kinship 

Inchianti  Illumina 550K Beadstudio < 97% <1% <10e-4 MACH 36 MERLIN Yes Pedigree,GC

KORA S4  Affymetrix 6.0 Birdseed <93% None None MACH v1.0.16 36 MACH2qtl No NA
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KORA F3 Affymetrix 500K BRLMM <95% <1% <10e-5 MACH v1.0.10 35 ProbABEL, R No NA 

Korcula Illumina CNV370 Bead Studio <98% <1% <10e-6 MACH v1.0.15 36 GeneABEL 

ProbABEL, R 

Yes Mmscore in 

ProbABEL 

Lifelines_R2 Illumina 

HumanCytoSNP-12 

Genome 

Studio <95% <1% <10e-5 BEAGLE v3.1.0 36.23a PLINK v1.07 No NA 

Lifelines_R3 Illumina 

HumanCytoSNP-12 

Genome 

Studio <95% <1% <10e-5 BEAGLE v3.1.0 36.23a PLINK v1.07 No  NA 

LOLIPOP_EW

610 

 

 

 

Illumina 610 Bead Studio <90% <1% <10e-6 MACH 36 Additive, using 

MACH2qtl 

No Top 10 PCs

LOLIPOP_EW

_P 

Perlegen custom NA <90% <1% <10e-6 MACH 35 Additive, using 

MACH2qtl 

No Top 10 PCs  

LOLIPOP_EW

_A 

Affymetrix 500k BRLMM <90% <1% <10e-6 MACH 35 Additive, using 

MACH2qtl 

No Top 10 PCs 

MESA Affymetrix 

Genome-Wide 

Human SNP Array 

6.0 

Birdseed v2 <95% 0.5% None IMPUTE 2.1.0 36 R No NA 

MICROS Illumina CNV370, Bead Studio <98% <1% <10e-6 MACH v1.0.16 36 ProbABEL Yes Mmscore in 
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Illumina 

HumHap300v2 

ProbABEL 

Orcades Illumina CNV370 & 

Illumina 

HumHap300v2 

Bead Studio 

<98% <1% <10e-6 MACH 1.0 ML 36 

GeneABEL, 

ProbABEL, R Yes 

Mmscore in 

ProbABEL 

PREVEND Illumina 

HumanCytoSNP-12 

Genome 

Studio 

<98% 1% <10e-5 BEAGLE 3.2 36.23 PLINK v1.07 No NA

PROSPER  Illumina 660k 

Quad 

Genome 

Studio 

<97.5

% 

None None MACH 36.22 Linear 

regression with 

ProbABEL 

No NA 

RS1 Illumina 550k Bead Studio <98% <1% <10e-6 MACH v1.0.15 36 MACH2qtl 

implemented in 

GRIMP88 

No NA 

RS2 Illumina 550k / 

610k Quad 

Genome 

Studio 

<98% <1% <10e-6 MACH v1.0.16 36 MACH2qtl 

implemented in 

GRIMP88 

No NA 

RS3 Illumina 610k 

Quad 

Genome 

Studio 

<98% <1% <10e-6 Mach v1.0.16 36 MACH2qtl 

implemented in 

GRIMP88 

No NA 

Sardinia Affymetrix 500K, 

10K and 6.0 

BRLMM 

(500K and 

10K) , 

<98% <5%

500K 

<5% 

<10e-6 MACH 36.22 Yes Yes Variance 

component 

(Merlin --
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Birdseed v2 

(6.0) 

10K 

<1% 

6.0 

fastassoc) 

SMART           

SHIP Affymetrix 6.0 Birdseed v2 None None None IMPUTE v0.5.0 36 QUICKTEST 

v0.95 

No NA

Split Illumina CNV370 Bead Studio <98% <1% <10e-6 MACH v1.0.15 36 GeneABEL, 

ProbABEL, R 

Yes Mmscore in 

ProbABEL 

Twins UK Illumina Hap300 

Duo, Hap 300, Hap 

550, Hap610 

Illuminus <95% <1% <10e-6 IMPUTE v0.3.2 36 SNPTEST v1.1.4 Yes Huber-White 

method for 

robust variance 

estimation in R 

YFS  Illumina 670k 

custom 

PLINK 1.07 < 95% < 1% ≤1e-6 MACH v1.0 36 PLINK 1.07 and 

ProbABEL 0.1-3 

No NA
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3. Table S3. Comprehensive list of 79 locus-phenotype associations identified.  
Locus sentinel: 1 = the discovery association for the locus (SNP with lowest P-value against any QRS phenotype); 0 = secondary 

phenotype(s) associated with the locus at P<1×10-8 

 

Region SNP 
Coded 

Allele 

Non-

coded 

allele 

Beta(SE) N P Trait 
Sentinel 

SNP 

After 

additional 

genotyping 

Novel 

1p36.12 rs2849028 A G 154.42(25.63) 44813 1.69E-09 leadsum 1 0 Y 

1p32.3 rs17391905 G T -1.27(0.19) 55934 1.07E-11 duration 1 0 N 

1p32.3 rs17106459 C T -416.16(72.03) 44625 7.60E-09 leadsum 0 0 Y 

1p31.3 rs2103883 G A -27.82(3.40) 47624 2.87E-16 cornell 0 1 Y 

1p31.3 rs2207790 A G -0.55(0.06) 50473 6.71E-19 duration 1 0 N

1p13.1 rs12039739 T C -0.41(0.07) 54447 6.22E-10 duration 1 1 N

1q22 rs2274317 T C 170.79(25.42) 40366 1.82E-11 leadsum 1 0 Y 

1q23.3 rs12036340 A G 148.75(22.78) 62073 6.61E-11 leadsum 1 0 Y 

1q32.1 rs10920184 T C -18.75(3.21) 56649 5.01E-09 cornell 1 0 Y 

1q32.1 rs4288653 A T 195.52(31.16) 31716 3.50E-10 leadsum 1 0 Y 

2p23.3 rs6710065 T C -18.66(3.17) 56524 4.12E-09 cornell 1 1 Y 

2p22.2 rs2216101 T C 21.96(3.58) 44793 8.80E-10 cornell 0 0 Y

2p22.2 rs3770770 T C 0.49(0.07) 54594 4.95E-11 duration 1 0 N

2q31.2 rs3731754 G C -44.14(5.83) 51650 3.81E-14 sokolow 0 1 Y 
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2q31.2 rs3816849 C T 174.07(22.29) 45961 5.77E-15 leadsum 1 0 Y

3p22.2 rs6781009 C T 171.08(26.07) 43637 5.30E-11 leadsum 0 0 Y 

3p22.2 rs6801957 T C 0.77(0.06) 58237 6.90E-40 duration 1 0 N 

3p21.1 rs4687718 A G -0.57(0.09) 54188 6.70E-10 duration 1 0 N 

3p14.1 rs2242285 A G 0.34(0.06) 58414 5.65E-09 duration 1 0 N 

3p14.1 rs13314892 A G -154.68(26.94) 45072 9.44E-09 leadsum 1 0 Y 

3q27.2 rs10937226 A G -26.17(4.54) 52737 8.21E-09 sokolow 0 0 Y

3q27.2 rs10937226 A G -192.61(23.86) 43137 6.82E-16 leadsum 1 0 Y

4p15.31 rs1344852 C G 0.46(0.08) 65737 1.45E-09 duration 1 1 Y 

5q33.2 rs13165478 A G -0.59(0.07) 44824 8.06E-19 duration 0 0 N 

5q33.2 rs13185595 A G -38.40(3.77) 39311 2.10E-24 cornell 1 0 Y 

6p21.31 rs1321311 A C 0.84(0.07) 57398 1.03E-37 duration 1 0 N 

6p21.31 rs9462210 A G 21.73(3.55) 59163 9.64E-10 cornell 0 1 Y 

6p21.1 rs1015150 T C -128.92(22.41) 45364 8.72E-09 leadsum 0 0 Y

6p21.1 rs1015150 T C -26.28(4.33) 54075 1.28E-09 sokolow 1 0 Y

6q22.31 rs11153730 T C -0.63(0.06) 58553 7.44E-29 duration 1 0 N 

6q22.31 rs11153730 T C -25.96(4.29) 52661 1.50E-09 sokolow 0 0 Y 

7p14.3 rs1419856 G A 0.67(0.08) 59752 6.67E-18 duration 1 1 N 

7p12.3 rs6968945 C T 0.34(0.06) 58002 5.14E-09 duration 1 0 N 

7q31.2 rs11773845 C A 0.36(0.06) 59758 7.50E-10 duration 1 1 Y 

8q24.13 rs4367519 T C -73.76(11.18) 52255 4.15E-11 sokolow 1 0 Y

8q24.13 rs10105974 G T -151.37(23.15) 45767 6.25E-11 leadsum 1 1 Y

10q21.1 rs1194743 T C 0.44(0.07) 50270 5.87E-09 duration 0 0 N 
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10q21.1 rs1733724 A G 32.94(4.30) 41414 1.75E-14 cornell 1 0 Y

10q21.3 rs12414364 C G 178.28(27.70) 43842 1.22E-10 leadsum 1 1 Y 

10q21.3 rs10509289 G C -229.76(35.46) 46025 9.16E-11 leadsum 1 0 Y 

10q22.2 rs7099599 T C 226.10(31.35) 46281 5.51E-13 leadsum 1 0 Y 

10q22.2 rs4114992 G A 39.97(5.98) 55146 2.39E-11 sokolow 0 1 Y 

10q25.2 rs7918405 A G 0.50(0.07) 58206 1.05E-14 duration 1 0 N 

10q25.2 rs7918405 A G 35.27(5.00) 52273 1.68E-12 sokolow 0 0 Y

11p11.2 rs2269434 C T 22.80(3.70) 46165 7.38E-10 cornell 1 0 Y

11q12.2 rs174577 A C -0.38(0.05) 70694 4.79E-12 duration 1 0 Y 

12q13.13 rs736825 G C -21.63(3.32) 54078 7.20E-11 cornell 1 0 Y 

12q13.3 rs2958153 A G -22.09(3.56) 54115 5.19E-10 cornell 0 0 Y 

12q13.3 rs2926743 A G -30.54(5.00) 50297 9.72E-10 sokolow 0 0 Y 

12q13.3 rs2926743 A G -275.14(26.01) 41454 3.74E-26 leadsum 1 0 Y 

12q24.21 rs883079 C T 0.52(0.06) 59255 4.58E-16 duration 0 1 N

12q24.21 rs1896312 C T -41.31(4.89) 50175 3.11E-17 sokolow 0 0 Y

12q24.21 rs2891537 T G 24.27(3.87) 46812 3.53E-10 cornell 0 0 Y 

12q24.21 rs7132327 C T -217.11(25.40) 45655 1.27E-17 leadsum 1 0 Y 

13q14.13 rs1408224 A G -139.00(20.14) 65242 5.12E-12 leadsum 1 1 Y 

13q22.1 rs728926 T C -0.40(0.06) 57432 5.60E-11 duration 1 1 N 

14q24.2 rs12880291 T G -0.49(0.06) 59888 4.41E-14 duration 1 0 N 

15q25.3 rs7183401 T G 241.73(22.61) 44287 1.10E-26 leadsum 1 0 Y

15q25.3 rs6496452 T A 22.17(3.40) 47633 7.36E-11 cornell 0 0 Y

15q25.3 rs3803405 A G -34.61(5.46) 40688 2.27E-10 sokolow 0 0 Y 
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15q26.3 rs8038015 C T -19.89(3.15) 58630 2.89E-10 cornell 0 0 Y

15q26.3 rs8038015 C T -212.76(22.61) 46463 4.93E-21 leadsum 1 0 Y 

15q26.3 rs6598541 A G -34.52(4.59) 51407 5.39E-14 sokolow 0 0 Y 

16q23.3 rs6565060 G A 345.81(48.07) 31789 6.30E-13 leadsum 1 0 Y 

17q11.2 rs7211246 A G -107.30(18.62) 65092 8.28E-09 leadsum 1 1 Y 

17q21.31 rs1635291 G A -32.22(4.97) 54480 8.78E-11 sokolow 0 0 Y 

17q21.31 rs242562 A G 191.41(24.92) 40609 1.57E-14 leadsum 1 0 Y

17q21.32 rs17608766 C T 0.52(0.09) 49724 8.98E-09 duration 0 1 N

17q24.2 rs12940610 A G 161.75(24.09) 38879 1.88E-11 leadsum 0 0 Y 

17q24.2 rs9910355 A C 0.41(0.06) 53713 1.14E-11 duration 0 0 N 

17q24.2 rs9912468 G C 32.05(4.60) 48740 3.11E-12 sokolow 1 0 Y 

18q12.1 rs617759 T G 150.45(24.26) 42995 5.63E-10 leadsum 1 1 Y 

18q12.2 rs879568 C G -0.34(0.06) 68500 1.88E-09 duration 1 0 Y 

18q12.3 rs10853525 T C 0.46(0.06) 56180 1.41E-14 duration 1 0 N

20p12.3 rs3929778 T C -21.42(3.33) 70143 1.22E-10 cornell 1 0 Y

20q11.22 rs2025096 A G -21.82(3.23) 73680 1.33E-11 cornell 1 0 Y 

20q11.22 rs2025096 A G -0.37(0.06) 75678 4.08E-09 duration 0 1 Y 

21q21.1 rs7283707 A G 188.13(27.91) 65800 1.58E-11 leadsum 1 1 Y 

21q21.3 rs13047360 G A 0.47(0.07) 59742 4.02E-10 duration 1 0 Y 
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4. Table S4. Genome-wide association and replication test results for the 52 sentinel SNPs 
ONLINE XLS File  
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5. Table S5. Full lists of the SNPs associated with phenotype at P<10-6 

ONLINE XLS File  
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6. Table S6. SNPs previously reported to be associated with the electrocardiographic traits 
Highlighted in green are genome wide significant associations (P<1×10-8). 

 
    Previous Previous cornell leadsum sokolow Duration

CHR POS SNP AF Trait P-value P-value P-value P-value P-value Reference 

1p13.1 116112490 rs4074536 0.29 QRS 2.36E-08 1.33E-01 3.83E-01 1.13E-01 7.15E-07 Sotoodehnia89 

1p13.2 112238867 rs2798334 0.29 P 7.98E-11 3.72E-01 9.63E-01 2.63E-01 4.44E-02 Verweij90

1p31.3 61646265 rs9436640 0.46 QRS 4.57E-18 3.75E-15 7.61E-01 9.00E-03 2.90E-18 Sotoodehnia89

1p32.3 51318728 rs17391905 0.05 QRS 3.26E-10 7.70E-05 1.64E-08 1.98E-03 1.07E-11 Sotoodehnia89 

1p36 23583062 rs2298632 0.50 QT 1.00E-14 3.70E-04 7.53E-09 3.51E-06 1.66E-05 Arkin91 

1p36.31 6201957 rs846111 0.28 QT 1.00E-16 5.36E-03 4.09E-01 1.14E-01 9.41E-01 Newton-Cheh92 

1q23.3 160300514 rs12143842 0.26 QT 2.00E-78 2.73E-01 3.02E-08 1.74E-05 1.20E-03 Newton-Cheh92 

1q23.3 160379534 rs16857031 0.14 QT 1.00E-34 2.66E-01 5.16E-04 6.84E-03 3.49E-03 Newton-Cheh92 

1q23.3 160399741 rs12029454 0.15 QT 3.00E-45 1.22E-01 1.63E-04 3.01E-04 2.26E-03 Newton-Cheh92

1q32.2 206007476 rs11118555 0.12 HR 3.88E-26 7.96E-01 8.26E-01 8.85E-01 7.14E-01 Den Hoed93

1q32.2 206195345 rs2745967 0.37 RR 3.20E-08 4.58E-01 4.26E-01 3.25E-01 7.03E-01 Eijgelsheim94 

2p14 66625504 rs11897119 0.39 PR 4.62E-11 7.42E-01 3.53E-03 8.52E-04 1.43E-01 Pfeufer 95 

2p22.2 36527059 rs7562790 0.40 QRS 8.22E-08 1.31E-06 1.35E-04 8.78E-02 2.65E-10 Sotoodehnia89 

2p22.2 37101519 rs17020136 0.21 QRS 1.90E-08 2.21E-02 2.48E-03 1.98E-02 1.14E-09 Sotoodehnia89 

2q31.1 174450854 rs938291 0.39 QT 6.00E-10 7.18E-01 8.52E-03 5.95E-02 1.82E-01 Arkin91 

2q31.2 179398101 rs7561149 0.42 QT 7.00E-09 3.07E-01 1.02E-05 3.39E-02 5.42E-02 Arkin91

2q31.2 179429291 rs17362588 0.11 HR 3.57E-26 1.13E-02 2.84E-04 1.44E-02 1.10E-05 Den Hoed93
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2q32.1 188041309 rs4140885 0.32 HR 4.72E-08 1.65E-01 2.13E-01 2.08E-01 2.27E-01 Den Hoed93

2q33 200868944 rs295140 0.42 QT 2.00E-11 7.02E-01 4.85E-01 2.67E-01 7.15E-02 Arkin91 

2q37.1 231979528 rs13030174 0.27 HR 1.04E-10 1.15E-01 3.36E-01 5.71E-01 6.42E-03 Den Hoed93 

3p14.1 66514292 rs2242285 0.42 QRS 1.09E-08 2.70E-01 5.82E-01 1.70E-02 5.68E-09 Sotoodehnia89 

3p21 47519007 rs17784882 0.40 QT 3.00E-08 7.38E-01 8.44E-01 2.10E-01 7.50E-02 Arkin91 

3p21.1 53257343 rs4687718 0.14 QRS 6.25E-08 6.46E-02 9.46E-03 5.66E-01 6.74E-10 Sotoodehnia89 

3p22.2 38534753 rs2051211 0.26 QRS 1.57E-08 8.57E-04 4.14E-01 5.91E-01 1.36E-12 Sotoodehnia89

3p22.2 38552366 rs10865879 0.25 QRS 1.67E-24 7.95E-07 4.67E-06 1.84E-04 3.83E-27 Sotoodehnia89

3p22.2 38568397 rs12053903 0.34 QT 1.00E-14 7.99E-06 1.02E-08 4.21E-06 5.41E-31 Newton-Cheh92 

3p22.2 38608927 rs11708996 0.15 PR 6.00E-26 1.97E-04 3.32E-03 6.13E-02 5.77E-23 Pfeufer 95 

3p22.2 38608927 rs11708996 0.16 QRS 1.26E-18 1.97E-04 3.32E-03 6.13E-02 5.77E-23 Sotoodehnia89 

3p22.2 38632903 rs11710077 0.21 QRS 5.74E-22 8.38E-05 2.25E-03 1.34E-02 4.11E-26 Sotoodehnia89 

3p22.2 38694939 rs9851724 0.33 QRS 1.91E-20 5.74E-04 8.13E-03 7.23E-01 6.97E-25 Sotoodehnia89 

3p22.2 38741679 rs6795970 0.36 PR 9.50E-59 1.85E-03 2.18E-03 6.04E-02 8.87E-39 Holm96

3p22.2 38741679 rs6795970 0.36 QRS 3.50E-09 1.85E-03 2.18E-03 6.04E-02 8.87E-39 Holm96

3p22.2 38742319 rs6801957 0.41 QRS 1.10E-28 1.58E-03 4.04E-03 8.45E-02 7.09E-40 Sotoodehnia89 

3p22.2 38749836 rs6800541 0.40 PR 2.10E-74 1.65E-03 1.81E-03 7.56E-02 1.43E-38 Pfeufer 95 

3q26.31 173267862 rs9647379 0.4 HR 1.17E-09 8.88E-02 1.07E-02 5.97E-06 6.08E-01 Den Hoed93 

3q26.33 180655673 rs7612445 0.18 HR 1.86E-14 8.12E-01 8.69E-01 4.45E-01 2.93E-01 Den Hoed93 

4q13 72357080 rs2363719 0.11 QT 8.00E-10 4.43E-01 3.76E-01 9.28E-01 6.52E-02 Arkin91 

4q21.23 86860173 rs7692808 0.31 PR 5.99E-20 6.75E-01 1.42E-01 7.52E-02 4.06E-01 Pfeufer 95

4q21.23 86870488 rs7660702 0.26 PR 2.50E-17 6.76E-01 1.41E-01 7.40E-02 4.66E-01 Holm96

4q22 95245457 rs3857067 0.46 QT 1.00E-09 6.18E-02 1.13E-01 8.81E-02 3.21E-01 Arkin91 



54 

 

5q31 137601624 rs10040989 0.13 QT 5.00E-11 8.43E-01 8.28E-01 1.22E-01 7.30E-01 Arkin91

5q33.2 153849233 rs13165478 0.36 QRS 7.36E-14 3.73E-24 9.52E-03 4.47E-02 8.16E-19 Sotoodehnia89 

5q35.1 172412942 rs251253 0.40 PR 9.45E-13 4.62E-01 3.74E-01 1.91E-02 1.35E-02 Pfeufer 95 

5q35.1 172596769 rs6882776 0.32 HR 2.29E-12 4.62E-04 6.38E-01 1.04E-02 3.11E-05 Den Hoed93 

6p21.2 36730878 rs1321311 0.21 QRS 2.70E-10 1.39E-09 2.45E-01 7.51E-01 1.05E-37 Holm96 

6p21.2 36731357 rs9470361 0.25 QRS 3.00E-27 2.40E-09 3.66E-01 9.87E-01 1.52E-37 Sotoodehnia89 

6p22 16402701 rs7765828 0.40 QT 3.00E-10 6.74E-02 8.42E-01 4.94E-01 3.91E-01 Arkin91

6q22.31 118680754 rs281868 0.50 RR 1.50E-10 2.66E-01 2.66E-02 7.45E-06 2.15E-27 Eijgelsheim94

6q22.31 118774215 rs11153730 0.51 HR 7.55E-21 3.87E-01 5.52E-03 1.46E-09 7.58E-29 Den Hoed93 

6q22.31 118774215 rs11153730 0.51 QRS 1.26E-18 3.87E-01 5.52E-03 1.46E-09 7.58E-29 Sotoodehnia89 

6q22.31 119100325 rs11756438 0.47 QT 5.00E-22 3.55E-01 1.63E-02 1.41E-08 2.01E-23 Newton-Cheh92 

6q22.31 121790241 rs11154022 0.33 RR 3.50E-08 8.89E-01 4.08E-01 3.05E-01 5.41E-01 Eijgelsheim94 

6q22.31 122173184 rs1015451 0.1 HR 1.14E-33 7.93E-01 8.50E-01 6.48E-01 1.58E-04 Den Hoed93 

6q22.31 122187733 rs9398652 0.10 RR 7.70E-16 6.43E-01 9.03E-01 7.46E-01 2.03E-05 Eijgelsheim94

7p12.3 46586670 rs7784776 0.43 QRS 1.28E-08 2.30E-04 2.02E-01 8.48E-01 4.63E-07 Sotoodehnia89

7p14.2 35271831 rs1362212 0.18 QRS 1.12E-13 1.35E-01 7.72E-01 1.79E-01 2.63E-14 Sotoodehnia89 

7q21.3 93387532 rs180242 0.33 HR 6.78E-12 4.07E-01 6.26E-01 8.79E-01 4.72E-01 Den Hoed93 

7q22.1 100291144 rs314370 0.19 RR 2.30E-10 6.47E-01 6.72E-01 4.96E-03 8.67E-01 Eijgelsheim94 

7q22.1 100324690 rs12666989 0.18 RR 9.40E-09 6.59E-01 5.10E-01 2.73E-02 6.29E-01 Eijgelsheim94 

7q22.1 100335067 rs13245899 0.2 HR 7.67E-27 5.74E-01 7.40E-01 1.06E-02 7.27E-01 Den Hoed93 

7q31 115987328 rs9920 0.09 QT 3.00E-08 4.67E-03 1.04E-01 1.47E-01 3.04E-07 Arkin91

7q31.2 115973477 rs3807989 0.40 PR 3.66E-28 1.36E-03 6.41E-02 1.30E-02 2.51E-09 Pfeufer 95

7q31.2 115973477 rs3807989 0.40 PR 7.40E-13 1.36E-03 6.41E-02 1.30E-02 2.51E-09 Holm96 
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7q33 136293174 rs2350782 0.12 HR 1.26E-12 7.39E-01 8.83E-01 8.89E-01 7.03E-01 Den Hoed93

7q36.1 150253095 rs2968864 0.25 QT 8.00E-16 3.78E-01 2.75E-01 5.71E-01 3.59E-02 Newton-Cheh92 

7q36.1 150268796 rs4725982 0.22 QT 5.00E-16 4.26E-02 6.41E-02 4.50E-01 4.62E-01 Newton-Cheh92 

8q13 71351896 rs16936870 0.10 QT 1.00E-09 2.24E-01 2.26E-01 4.52E-01 1.13E-02 Arkin91 

8q22.1 98919506 rs11779860 0.47 QT 2.00E-10 8.81E-01 7.74E-01 7.49E-01 1.04E-02 Arkin91 

8q22.3 104002021 rs1961102 0.33 QT 3.00E-09 3.08E-01 3.11E-01 1.27E-01 2.19E-01 Arkin91 

10q21.1 53893983 rs1733724 0.25 QRS 3.05E-08 1.86E-14 3.44E-06 4.45E-01 3.62E-08 Sotoodehnia89

10q24 104039996 rs2485376 0.39 QT 3.00E-08 5.11E-03 3.20E-01 9.19E-01 7.46E-01 Arkin91

10q25.2 114469252 rs7342028 0.27 QRS 4.95E-10 3.77E-03 2.76E-01 1.41E-07 1.12E-11 Sotoodehnia89 

11p15.5 2441379 rs2074238 0.06 QT 3.00E-17 2.01E-01 2.29E-01 7.03E-01 4.15E-01 Newton-Cheh92 

11p15.5 2458895 rs12576239 0.13 QT 1.00E-15 2.85E-03 1.30E-01 3.39E-01 4.15E-02 Newton-Cheh92 

11q12 61366326 rs174583 0.34 QT 8.00E-11 1.44E-03 1.41E-04 5.79E-03 2.30E-07 Arkin91 

11q12.2 61327359 rs174547 0.33 RR 8.20E-10 3.11E-03 2.74E-04 3.84E-03 2.13E-07 Eijgelsheim94 

11q12.2 61327958 rs174549 0.31 HR 1.38E-22 5.64E-04 4.42E-05 2.76E-03 1.21E-06 Den Hoed93

11q12.2 61361390 rs174577 0.33 PRseg 7.62E-13 1.85E-03 1.90E-04 4.15E-03 4.28E-11 Verweij90

11q13.5 75587267 rs4944092 0.32 PR 3.22E-08 2.39E-01 8.32E-01 2.42E-01 3.75E-01 Pfeufer 95 

12p11.1 33468257 rs7980799 0.4 HR 6.22E-24 6.86E-02 7.28E-02 2.39E-02 8.55E-01 Den Hoed93 

12p12.1 24662145 rs17287293 0.15 HR 3.07E-20 4.39E-02 9.92E-01 9.37E-01 1.27E-02 Den Hoed93 

12p12.1 24662145 rs17287293 0.15 RR 5.70E-11 4.39E-02 9.92E-01 9.37E-01 1.27E-02 Eijgelsheim94 

12p12.1 24679606 rs11047543 0.15 PR 3.34E-13 4.99E-02 9.21E-01 8.67E-01 1.56E-02 Pfeufer 95 

12q12 37392998 rs826838 0.44 HR 3.73E-09 3.24E-01 9.43E-02 1.29E-03 9.08E-01 Den Hoed93

12q23.3 105673552 rs2067615 0.49 HR 1.58E-09 9.25E-01 1.47E-01 1.86E-01 7.75E-01 Den Hoed93

12q24 109207586 rs3026445 0.36 QT 3.00E-12 4.72E-01 5.26E-03 1.12E-01 3.88E-04 Arkin91 
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12q24.21 113277623 rs883079 0.29 QRS 1.33E-10 8.88E-01 8.29E-06 1.09E-02 4.63E-16 Sotoodehnia89

12q24.21 113279826 rs3825214 0.22 PR 3.30E-12 6.95E-01 1.22E-02 4.87E-02 2.66E-12 Holm96 

12q24.21 113279826 rs3825214 0.22 QRS 3.00E-13 6.95E-01 1.22E-02 4.87E-02 2.66E-12 Holm96 

12q24.21 113830807 rs1896312 0.28 PR 3.13E-17 8.26E-07 3.04E-17 2.95E-17 4.99E-11 Pfeufer 95 

12q24.21 113866123 rs10850409 0.27 QRS 3.06E-10 1.09E-07 1.30E-17 6.38E-17 4.96E-13 Sotoodehnia89 

13q12.11 20198909 rs2253017 0.15 PRseg 2.20E-08 7.59E-02 7.84E-01 7.46E-01 9.50E-02 Verweij90 

13q12.11 21029897 rs2798269 0.40 PRseg 3.22E-10 8.64E-01 9.44E-02 1.85E-01 2.93E-01 Verweij90

13q14.13 46136718 rs9590974 0.35 PRseg 2.00E-08 2.07E-03 4.75E-06 2.04E-03 1.79E-01 Verweij90

13q22 73411123 rs728926 0.36 QT 2.00E-08 4.32E-01 4.28E-01 6.92E-01 5.60E-11 Arkin91 

13q22.1 73418187 rs1886512 0.37 QRS 1.27E-08 3.10E-01 9.86E-01 2.34E-01 5.84E-10 Sotoodehnia89 

14q11.2 22931651 rs365990 0.34 HR 9.40E-11 3.35E-01 4.13E-01 1.58E-01 9.56E-01 Holm96 

14q11.2 22931651 rs365990 0.35 HR 5.39E-45 3.35E-01 4.13E-01 1.58E-01 9.56E-01 Den Hoed93 

14q11.2 22931651 rs365990 0.37 RR 5.40E-14 3.35E-01 4.13E-01 1.58E-01 9.56E-01 Eijgelsheim94 

14q11.2 22935725 rs452036 0.36 RR 8.10E-15 6.10E-01 4.74E-01 2.57E-01 7.44E-01 Eijgelsheim94

14q11.2 23046850 rs223116 0.24 RR 1.10E-08 2.06E-01 3.53E-01 2.74E-01 3.44E-01 Eijgelsheim94

14q24.2 71127108 rs11848785 0.27 QRS 1.04E-10 4.93E-04 4.26E-03 1.99E-03 5.57E-14 Sotoodehnia89 

14q31.3 84879664 rs17796783 0.28 HR 2.69E-13 1.88E-01 9.06E-01 6.33E-01 7.78E-01 Den Hoed93 

14q32 102044752 rs2273905 0.35 QT 4.00E-11 7.38E-01 7.51E-02 6.95E-01 3.87E-01 Arkin91 

15q21 48632310 rs3105593 0.45 QT 3.00E-12 7.38E-01 8.09E-03 8.89E-02 6.71E-02 Arkin91 

15q24.1 71452559 rs4489968 0.16 HR 3.82E-20 2.82E-01 7.62E-01 2.97E-02 2.29E-01 Den Hoed93 

16p13.12 14302933 rs246185 0.34 QT 3.00E-13 1.52E-01 8.83E-01 2.43E-01 6.56E-03 Arkin91

16p13.13 11599254 rs8049607 0.51 QT 5.00E-15 7.58E-02 6.13E-05 4.74E-06 3.86E-01 Newton-Cheh92

16p13.3 3813643 rs1296720 0.20 QT 4.00E-10 4.34E-01 5.99E-02 1.51E-01 1.04E-01 Arkin91 
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16q21 57124739 rs37062 0.24 QT 3.00E-25 1.03E-02 5.56E-02 2.40E-01 9.23E-01 Newton-Cheh92

17q12 30348495 rs2074518 0.54 QT 6.00E-12 1.56E-01 4.81E-01 7.54E-01 1.15E-01 Newton-Cheh92 

17q21.32 42368270 rs17608766 0.16 QRS 4.75E-10 2.30E-08 4.64E-05 4.49E-01 9.03E-09 Sotoodehnia89 

17q24 61734255 rs9892651 0.43 QT 3.00E-14 3.71E-03 2.14E-11 1.72E-11 2.07E-11 Arkin91 

17q24.2 61748819 rs9912468 0.43 QRS 1.06E-08 2.66E-03 4.87E-11 3.01E-12 1.66E-11 Sotoodehnia89 

18q12.3 40693884 rs991014 0.42 QRS 6.20E-10 2.82E-01 1.49E-02 3.89E-02 1.69E-14 Sotoodehnia89 

20q11.23 36277452 rs6127471 0.46 HR 5.22E-29 7.12E-03 7.50E-01 3.30E-01 1.34E-01 Den Hoed93
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7. Table S7. Phenotypic variance explained by sentinel SNPs 
 

GWA cohorts 

Non-GWA 

cohorts Combined

Sample size (n) 11,156 5,032 16,188 

Model 1 - All Sentinel SNPs 

QRS-duration 0.050 0.049 0.050

12-lead sum 0.044 0.036 0.041 

Sokolow-Lyon 0.029 0.024 0.027 

Cornell 0.028 0.040 0.032 

Model 2 - Phenotype specific SNPs 

QRS-duration 0.044 0.047 0.045

12-lead sum 0.033 0.022 0.030

Sokolow-Lyon 0.017 0.012 0.016 

Cornell 0.012 0.018 0.014 
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8. Table S8. Potential secondary SNPs with independent effects on 
phenotype 
 
Region Phenotype GWAS 

Lead SNP 

GWAS P Position SNPs at P<10-8 in conditional 

analysis 

2p22.2 QRS rs3770770 4.946E-11 37046370 rs3770770 (2.11E-10, STRN), 

rs3770900 (3.95E-10, CRIM1) 

3p22.2 

 

QRS rs6801957 6.904E-40 38742319 rs6801957 (4.41E-42, SCN10A), 

rs12631864 (2.59E-11, EXOG), 

rs6781009 (6.79E-25, SCN5A), 

rs10154914 (7.04E-19, SCN5A), 

rs9851724 (3.75E-23, SCN10A),  

rs6776034(4.80E-09, SCN10A) 

5q33.2 Cornell rs13185595 2.099E-24 153852363 rs13185595 (1.08E-28, HAND1), 

rs17116169 (8.81E-09, SAP30L) 

7p14.3 QRS rs1419856 6.669E-18 35273508 rs1419856 (2.49E-17, TBX20), 

rs340383 (1.31E-09, TBX20) 

12q24.21 QRS rs7132327 1.27E-17 113865454 rs7132327 (2.14E-13, TBX3), 

rs883079 (2.33E-16, TBX5) 

12q24.21 Sokolow rs1896312 3.106E-17 113830807 rs1896312 (1.11E-16, TBX3), 

rs11067246 (1.24E-16, TBX3) 
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 9. Table S9. Directional consistency in African Americans and Asian Indians 
In the African American sample, 35 of 51 available locus-phenotype associations had the same direction of effect as seen in the European 

sample (P=5.49 ×10-3, one-way binomial test) and in the Indian Asian sample, 22 of 29 available locus-phenotype associations showed 

the same direction of effect (P=4.07×10-3). Freq EW; allele frequency of European White (Discovery), Freq AA; Allele frequency African 

Americans, Freq AI; Allele frequency Asian Indians. 

 

     

Discovery 

meta-

analysis  

African 

Americans  

Asian 

Indians  

        (n=65,275)  (n=3,603)  (n=4,619)  

Region SNP 

Sentinel 

SNP 

Coded 

Allele 

Non-

coded 

allele 

Freq 

EW 

Freq

AA 

Freq 

AI Direction 

of effect P-value 

Direction of 

effect P-value 

Direction 

of effect P-value 

1p13.1 rs12039739 duration T C 0.29 0.27 0.26 - 6.51E-09 - 5.33E-01 + 2.84E-02 

1p31.3 rs2207790 duration A G 0.47 0.25 0.55 - 6.71E-19 - 3.61E-01 - 1.47E-01 

1p32.3 rs17391905 duration G T 0.04 0.07  - 1.07E-11 - 2.33E-01   

1p36.12 rs2849028 leadsum A G 0.26 0.73 + 1.69E-09 + 4.19E-01

1q22 rs2274317 leadsum T C 0.32 0.70 + 1.82E-11 - 3.03E-01

1q23.3 rs12036340 leadsum A G 0.76 0.82  + 1.49E-09 + 1.59E-01   

1q32.1 rs10920184 cornell T C 0.38 0.67 0.38 - 5.01E-09 - 3.66E-02 - 5.31E-02 

1q32.1 rs4288653 leadsum A T 0.23 0.10  + 3.50E-10 + 3.03E-01   
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2p22.2 rs3770770 duration T C 0.20 0.09 0.29 + 4.95E-11 - 1.38E-02 + 4.64E-01 

2p23.3 rs6710065 cornell T C 0.42 0.38 0.32 - 4.12E-09 + 7.53E-02 - 2.58E-02 

2q31.2 rs3816849 leadsum C T 0.46 0.29  + 5.77E-15 + 7.23E-02   

3p14.1 rs13314892 leadsum A G 0.77 0.81  - 8.93E-09 + 2.22E-01   

3p14.1 rs2242285 duration A G 0.42 0.28 0.37 + 5.65E-09 + 2.37E-01 - 1.75E-01

3p21.1 rs4687718 duration A G 0.13 0.53 0.15 - 6.70E-10 - 4.66E-01 + 4.53E-01

3p22.2 rs6801957 duration T C 0.42 0.16 0.38 + 6.90E-40 + 6.03E-02 + 3.72E-01 

3q27.2 rs10937226 leadsum A G 0.35 0.44  - 6.82E-16 - 1.12E-02   

4p15.31 rs1344852 duration C G 0.85 0.86 0.84 + 1.21E-09 - 2.38E-01 - 6.25E-01 

5q33.2 rs13185595 cornell A G 0.37 0.54 0.26 - 2.10E-24 - 3.81E-03 - 3.82E-03 

6p21.1 rs1015150 sokolow T C 0.45 0.53 0.34 - 1.28E-09 - 2.17E-02 + 4.30E-01 

6p21.31 rs1321311 duration A C 0.27 0.39 0.32 + 1.03E-37 - 7.77E-01 + 6.19E-01

6q22.31 rs11153730 duration T C 0.50 0.71 0.57 - 7.44E-29 - 3.51E-01 - 1.49E-01

7p12.3 rs6968945 duration C T 0.44 0.26 0.52 + 5.14E-09 - 4.82E-01 + 1.19E-01 

7p14.3 rs1419856 duration G A 0.16 0.04  + 6.67E-18 - 5.24E-01   

7q31.2 rs11773845 duration C A 0.41 0.64 0.40 + 7.50E-10 + 3.50E-02 + 8.93E-02 

8q24.13 rs10105974 leadsum G T 0.36 0.51  - 6.25E-11 + 1.42E-01   

8q24.13 rs4367519 sokolow T C 0.04 0.04 0.19 - 4.15E-11   - 2.66E-01 

10q21.1 rs1733724 cornell A G 0.26 0.05 0.29 + 1.75E-14 + 5.34E-01 + 3.59E-01

10q21.3 rs10509289 leadsum G C 0.11 0.23 - 9.16E-11 - 6.42E-04

10q21.3 rs12414364 leadsum C G 0.21 0.24 + 1.22E-10 + 1.28E-01

10q22.2 rs7099599 leadsum T C 0.15 0.08  + 5.51E-13 - 7.50E-01   
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10q25.2 rs7918405 duration A G 0.26 0.74  + 1.05E-14 - 6.42E-01 + 3.12E-02 

11p11.2 rs2269434 cornell C T 0.32 0.55 0.45 + 7.38E-10 - 9.68E-01 + 4.46E-01 

11q12.2 rs174577 duration A C 0.34 0.36 0.19 - 4.28E-11 - 3.33E-01 - 7.87E-01 

12q13.13 rs736825 cornell G C 0.36 0.26 0.33 - 7.20E-11 - 7.95E-02 - 3.73E-02 

12q13.3 rs2926743 leadsum A G 0.27 0.10 - 3.74E-26 - 2.03E-01

12q24.21 rs7132327 leadsum C T 0.27 0.23 - 1.27E-17 - 1.06E-03

13q14.13 rs1408224 leadsum A G 0.69 0.59  - 3.60E-10 - 9.86E-03   

13q22.1 rs728926 duration T C 0.38 0.32 0.40 - 5.60E-11 + 6.91E-01 + 8.04E-01 

14q24.2 rs12880291 duration T G 0.26 0.07 0.15 - 4.41E-14 - 4.39E-01 + 3.25E-01 

15q25.3 rs7183401 leadsum T G 0.44 0.64  + 1.10E-26 + 2.72E-02   

15q26.3 rs8038015 leadsum C T 0.38 0.53  - 4.93E-21 - 4.75E-01   

16q23.3 rs6565060 leadsum G A 0.08 0.14 + 6.30E-13 + 6.35E-04

17q11.2 rs7211246 leadsum A G 0.54 0.49 - 6.01E-09 + 1.03E-01

17q21.31 rs242562 leadsum A G 0.38 0.30  + 1.57E-14 + 1.84E-01   

17q24.2 rs9912468 sokolow G C 0.44 0.37 0.39 + 3.11E-12 + 9.80E-01 + 4.58E-03 

18q12.1 rs617759 leadsum T G 0.33 0.06  + 5.63E-10 + 4.17E-02   

18q12.2 rs879568 duration C G 0.33 0.53 0.44 - 8.45E-09 + 1.58E-01 - 3.43E-01 

18q12.3 rs10853525 duration T C 0.42 0.24 0.25 + 1.41E-14 + 9.03E-01 + 1.37E-01 

20p12.3 rs3929778 cornell T C 0.80 0.88 0.80 - 6.42E-09 + 8.10E-01 - 6.62E-01

20q11.22 rs2025096 cornell A G 0.21 0.17 0.25 - 4.51E-11 - 3.13E-01 - 1.04E-01

21q21.1 rs7283707 leadsum A G 0.13 0.46 + 3.76E-09 + 1.99E-01

21q21.3 rs13047360 duration G A 0.18 0.07 0.21 + 4.02E-10 + 4.50E-01 + 6.23E-01 
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10. Table S10. Coding SNPs in LD with lead locus-phenotype SNPs. 
Coding SNPs in transcribed genes in LD at r2>0.8 (1000G; European ancestry) for all locus-phenotype associated lead SNPs (n=79). AF 

is frequency of allele in the default global population of 1000 Genome phase 1 genotype data from 1,094 worldwide individuals (May 2011 

dataset). R2 is LD between sentinel and non-synonymous SNP.  

 

Sentinel SNP CHR BP (hg19) AF Non-syn SNP 

CEU 

r2 

FIN 

r2 

GBR

r2 

TSI 

r2 Gene 

Amino Acid 

change 

Protein 

Position 

leadSNP 

52 Loci 

(1) or 

trait 

specific 

snp (0) 

rs6801957 3 38767315 0.42 rs6795970 0.98 1.00 0.98 0.98 SCN10A Val→Ala 1073 1 

rs10937226 3 185302885 0.35 rs6762208 0.97 1.00 0.98 1.00 SENP2 Thr→Lys 301 1

rs11153730 6 118667522 0.50 rs3734381 0.80 CEP85L Ser→Gly 137/140 1

rs4367519 8 124666429 0.04 rs72711231 0.85 KLHL38 Lys→Glu 508 1 

rs4367519 8 124666429 0.04 rs16898691 1.00 1.00 0.87 KLHL38 Gly→Arg 394 1 

rs7099599 10 75487081 0.15 rs34163229 0.88 0.82 0.87 0.88 SYNPO2L Ser→Tyr 609/833 1 

rs7099599 10 75487081 0.15 rs3812629 0.88 0.82 0.87 0.88 SYNPO2L Pro→Leu 483/707 1 

rs7099599 10 75487081 0.15 rs60632610 0.88 0.88 0.87 0.89 SYNPO2L Gly→Ser 2 1 

rs4114992 10 75566829 0.14 rs34163229 0.88 0.82 0.83 0.88 SYNPO2L Ser→Tyr 609/833 0

rs4114992 10 75566829 0.14 rs3812629 0.88 0.82 0.83 0.88 SYNPO2L Pro→Leu 483/707 0
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rs4114992 10 75566829 0.14 rs60632610 0.88 0.88 0.83 0.89 SYNPO2L Gly→Ser 2 0 

rs2269434 11 47360412 0.32 rs2167079 0.82 0.82 ACP2 Arg→Gln 29 1 

rs2958153 12 57081517 0.28 rs2958149 1.00 0.87 0.93 0.90 NACA Leu→Pro 688 0 

rs2958153 12 57081517 0.28 rs2926743 1.00 0.87 0.93 0.90 NACA Phe→Ser 405 0 

rs2926743 12 57114100 0.27 rs2958149 1.00 1.00 1.00 1.00 NACA Leu→Pro 688 1

rs2926743 12 57114100 0.27 rs2926743 1.00 1.00 1.00 1.00 NACA Phe→Ser 405 1

rs3803405 15 85383640 0.30 rs1051168 0.88 0.88 0.94 0.84 NMB Pro→Thr 73 0 

rs3803405 15 85383640 0.30 rs3803403 1.00 1.00 1.00 1.00 ALPK3 Thr→Ser 414 0 

rs3803405 15 85383640 0.30 rs3803405 1.00 1.00 1.00 1.00 ALPK3 Gly→Glu 579 0 

rs7211246 17 28485762 0.54 rs9897794 0.91 0.87 0.86 EFCAB5 Leu→Val 181/237 1 

rs114860868 (rs1635291) 17 43751913 0.25 rs116966623 0.84 0.86 0.84 0.85 SPPL2C Ser→Pro 224 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs117598307 0.84 0.86 0.84 0.85 SPPL2C Ala→Thr 332 0

rs114860868 (rs1635291) 17 43751913 0.25 rs112235641 0.84 0.86 0.84 0.85 SPPL2C Arg→Pro 461 0

rs114860868 (rs1635291) 17 43751913 0.25 rs112636016 0.84 0.86 0.84 0.85 SPPL2C Ile→Val 471 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs113834859 0.84 0.86 0.84 0.85 SPPL2C Ser→Pro 601 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs111430241 0.84 0.86 0.84 0.85 SPPL2C Gly→arg 620 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs112560719 0.84 0.86 0.81 0.85 SPPL2C Pro→Arg 643 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs118160437 0.84 0.86 0.84 0.85 MAPT Pro→Leu 202 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs118082626 0.84 0.86 0.84 0.85 MAPT Asp→Asn 285 0

rs114860868 (rs1635291) 17 43751913 0.25 rs117070738 0.84 0.86 0.84 0.85 MAPT Val→Ala 289 0

rs114860868 (rs1635291) 17 43751913 0.25 rs117495416 0.84 0.86 0.84 0.85 MAPT Arg→Trp 370 0

rs114860868 (rs1635291) 17 43751913 0.25 rs117701706 0.84 0.86 0.84 0.85 MAPT Ser→Pro 447 0 
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rs114860868 (rs1635291) 17 43751913 0.25 rs117086266 0.84 0.86 0.84 0.85 STH Gln→Arg 7 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs116937503 0.84 0.86 0.84 0.85 KANSL1 Ile→Thr 1085 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs117312607 0.84 0.86 0.84 0.85 KANSL1 Ser→Pro 718 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs117648158 0.84 0.86 0.84 KANSL1 Arg→Ser 247 0 

rs114860868 (rs1635291) 17 43751913 0.25 rs138137490 0.80 KANSL1 Asn→His 225 0

rs114860868 (rs1635291) 17 43751913 0.25 rs117830374 0.80 KANSL1 Lys→Thr 104 0

rs879568 18 34311659 0.33 rs2303510 0.90 0.88 FHOD3 Val→Ile 1151 1 

rs2025096 20 33540000 0.21 rs3746435 0.86 0.91 0.97 MYH7B Lys→Asn 1552 1 

rs2025096 20 33540000 0.21 rs3746429 0.85 EDEM2 Ala→Thr 419/456 1 
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11. Table S11. Motif scan for transcription factor recognition sites within 
DHSs.  
 

Motifs in bold are within a DHS in foetal heart.  

 

Region Sentinel SNP 

#cell 

types 

DHS 

active 

in 

DHS 

in 

fHeart 

Genetic 

location Motifs perturbed by SNP 

1p36.12 rs2849028 32 Y coding no 

1p32.3 rs17391905 0 N intergenic no 

1p31.3 rs2207790 2 Y intron no 

1p13.1 rs12039739 5 N intergenic no 

1q22 rs2274317 82 N coding no

1q23.3 rs12036340 0 N intergenic no

1q32.1 rs10920184 5 Y intron no 

1q32.1 rs4288653 80 Y intron No 

2p23.3 rs6710065 3 N intron EHF,ELF3,ELK1,ELK3,ELK4,ERG,ETS1,ETV1,ET

V2,ETV3,ETV4,ETV5,ETV6,FLI1,GABPA,PRDM

4 

2p22.2 rs3770770 74 Y intron CEBPA,CEBPB,CEBPD,CEBPE,CEBPG 

2q31.2 rs3816849 4 Y intron ZEB1

3p22.2 rs6801957 30 Y intron No

3p21.1 rs4687718 5 N intron MSC 

3p14.1 rs2242285 1 N intron MEF2A,ZNF713 

3p14.1 rs13314892 3 Y intron MGA,TBX21 

3q27.2 rs10937226 10 N promoter AHR,ARNT,ATF1,CREB1 

4p15.31 rs1344852 3 N intergenic no

5q33.2 rs13185595 0 N intergenic no

6p21.31 rs1321311 23 N intergenic no

6p21.1 rs1015150 11 N intron ESRRG,PAX4 

6q22.31 rs11153730 0 N intergenic no 
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7p14.3 rs1419856 1 Y intergenic FOXP1,POU5F1

7p12.3 rs6968945 1 N intergenic MECOM,SRF,TBX1

7q31.2 rs11773845 0 N intron no 

8q24.13 rs4367519 28 Y promoter no 

8q24.13 rs10105974 15 Y intergenic no 

10q21.1 rs1733724 4 N intergenic no 

10q21.3 rs12414364 0 N intron no 

10q21.3 rs10509289 8 Y intron no

10q22.2 rs7099599 0 N intergenic no

10q25.2 rs7918405 3 Y intron no

11p11.2 rs2269434 2 Y intron ZBTB12,ZBTB6,ZNF524 

11q12.2 rs174577 1 N intron GLI1,GLI2,GLI3,TP53 

12q13.13 rs736825 4 N promoter EGR1,EGR2,EGR3,EWSR1,FLI1,KLF11,SP1,SP2

,SP3,ZBTB7B,ZNF148,ZNF281,ZNF350,ZNF74

0 

12q13.3 rs2926743 3 N coding ATF5,HOXA5,POU1F1,SPI1 

12q24.21 rs7132327 1 N intergenic VDR

13q14.13 rs1408224 51 Y intron GLIS3,KLF11 

13q22.1 rs728926 12 Y intron no 

14q24.2 rs12880291 2 N intergenic no 

15q25.3 rs7183401 33 Y intron CEBPA 

15q26.3 rs8038015 2 N intron NANOG 

16q23.3 rs6565060 3 Y intron GATA1,GATA2,GATA3,GATA4,GATA5,GATA6,

RORA,TAL1 

17q11.2 rs7211246 0 N intron no 

17q21.31 rs242562 78 Y intron RELA 

17q24.2 rs9912468 0 N intron no 

18q12.1 rs617759 10 N intergenic ZFP161,ZNF423 

18q12.2 rs879568 0 N intron no 

18q12.3 rs10853525 4 N intron HOXA13,HOXC13

20p12.3 rs3929778 1 N intergenic NFAT5,STAT5A

20q11.22 rs2025096 11 Y promoter NR1I2,RXRA 

21q21.1 rs7283707 45 Y intron REST 

21q21.3 rs13047360 1 Y intergenic no 
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12. Table S12. Relationship between sentinel SNPs and cis-eQTLs 
Relationships between sentinel SNPs from the GWAS with expression of cis genes (+/- 1 MB) in 4 unrelated studies: (1)  Peripheral 

blood lymphocytes from 1,469 unrelated individuals from the UK and Netherlands (2), Left ventricle tissue from 313 individuals (3) 

Left ventricular tissue from 110 non-diseased human hearts (RNA-seq), and (4) peripheral blood lymphocytes from 2,116 

individuals (RNA-seq). Genes identified as eQTLs based on: P<1×10-5 for association of sentinel SNP with transcript expression 

(Tx P1) and r2≥0.8 between Sentinel SNP and Transcript SNP (the SNP most closely associated with transcript). Tx P2: association 

of transcript SNP with expression; LD between sentinel and peak SNPs (r2) calculated from the 1,469 individuals.  
 

Band  
Sentinel 
SNP  Position1  

Primary 
Pheno  Gene  Tx P1  

Transcript 
SNP  Position2  Distance Tx P2  r2  

leadS
NP 
52 Loci 
(1) or 
trait 
specifi
c snp 
(0) Source 

2q31.2 rs3816849 179375335 leadsum TTN 6.58E-17 rs3816849 1,79E+08 0 6.58E-17 1.00 1 4 
3q27.2 rs10937226 186785579 leadsum SENP2 3.90E-80 rs3087964 1,87E+08 45517 1.70E-80 0.98 1 1 
6p21.31 rs1321311 36730878 duration CDKN1A 1.10E-13 rs9470361 36731357 479 3.00E-16 0.92 1 1 
8q24.13 rs10105974 125923696 leadsum MTSS1 4.15E-18 rs7461129 1,26E+08 6859 9.17E-23 0.83 1 2 
10q22.2 rs7099599 75157087 leadsum CAMK2G 5.00E-08 rs4746145 75187993 30906 1.98E-08 0.97 1 4 
10q22.2 rs4114992 75236835 sokolow CAMK2G 4.98E-08 rs4746145 75187993 -48842 1.98E-08 0.97 0 4 
11p11.2 rs2269434 47316988 cornell NR1H3 3.10E-31 rs7395581 47202973 -114015 1.80E-38 0.81 1 1 
11p11.2 rs2269434 47316988 cornell NR1H3 6.57E-56 rs326222 47216244 -100744 8.61E-69 0.82 1 4 
11q12.2 rs174577 61361390 duration FADS2 7.26E-11 rs174548 61327924 -33466 1.48E-11 0.81 1 2 
11q12.2 rs174577 61361390 duration TMEM258 9.10E-17 rs174538 61316657 -44733 1.11E-17 0.86 1 4 
12q13.3 rs2958153 55367784 cornell BAZ2A 8.20E-16 rs941207 55309551 -58233 3.60E-17 0.91 0 1 
12q13.3 rs2958153 55367784 cornell NACA 7.35E-26 rs941207 55309551 -58233 2.38E-27 0.84 0 4 
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12q13.3 rs2926743 55400367 leadsum NACA 3.78E-27 rs941207 55309551 -90816 2.38E-27 0.85 1 4 
15q25.3 rs7183401 83172948 leadsum SCAND2 1.00E-09 rs7169629 82992278 -180670 4.80E-13 0.80 1 1 
15q25.3 rs7183401 83172948 leadsum ALPK3 9.94E-18 rs1975277 83130562 -42386 2.90E-19 0.93 1 4 
15q25.3 rs6496452 83173649 cornell ALPK3 1.12E-17 rs1975277 83130562 -43087 2.90E-19 0.93 0 4 
15q25.3 rs3803405 83184644 sokolow NMB 2.10E-51 rs62021193 82971587 -213057 3.52E-63 0.83 0 4 
17q11.2 rs7211246 25509888 leadsum EFCAB5 2.71E-35 rs4294865 25229862 -280026 8.85E-43 0.83 1 4 
17q21.31 rs1635291 41107696 sokolow LRRC37A2 9.46E-38 rs2668624 41708649 600953 8.85E-49 0.84 0 2 
17q21.31 rs1635291 41107696 sokolow LRRC37A4 6.57E-13 rs2957297 41723989 616293 1.91E-15 0.89 0 3 
17q21.31 rs1635291 41107696 sokolow ARL17A 7.69E-06 rs7225002 41544850 437154 1.47E-08 0.87 0 3 
17q21.31 rs1635291 41107696 sokolow LRRC37A 5.32E-12 rs34097347 41305238 197542 5.16E-15 0.87 0 3 
17q21.31 rs1635291 41107696 sokolow LOC644246 2.45E-15 rs2696455 41639348 531652 9.91E-19 0.85 0 3 
17q21.31 rs1635291 41107696 sokolow LRRC37A4P 3.27E-310 rs111370985 41208507 100811 3.27E-310 0.85 0 4 
17q21.31 rs1635291 41107696 sokolow CRHR1-IT1 3.27E-310 rs60814418 41206410 98714 3.27E-310 0.85 0 4 
17q21.31 rs1635291 41107696 sokolow DND1P1 3.27E-310 rs55974014 41113233 5537 3.27E-310 0.85 0 4 

17q21.31 rs1635291 41107696 sokolow RP11-
707O23.5 3.27E-310 rs55974014 41113233 5537 3.27E-310 0.85 0 4 

17q21.31 rs242562 41382599 leadsum MAPT 5.49E-24 rs242557 41375573 -7026 4.08E-24 0.90 1 2 
17q24.2 rs9912468 61748819 sokolow PRKCA 1.14E-41 rs11658550 61742145 -6674 8.80E-42 0.99 1 2 
20q11.22 rs2025096 33003661 cornell EDEM2 5.20E-20 rs3746429 33167268 163607 5.00E-22 0.82 1 1 
20q11.22 rs2025096 33003661 cornell EDEM2 2.97E-99 rs7353271 33191092 187431 3.31E-106 0.80 1 4 
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13. Table S13. Candidate genes identified by GRAIL using Pubmed 2006 
or 2012 datasets.  
P-values are corrected for multiple testing.   

 
   GRAIL 2006 GRAIL 2012 

Region SNP Position Gene P Gene P 

1p36.12 rs2849028 23561520 HTR1D 5.26E-01 HTR1D 8.32E-01 

1p32.3 rs17391905 51318728 CDKN2C 2.30E-01 CDKN2C 2.07E-01 

1p31.3 rs2207790 61670555 NFIA 6.64E-01 NFIA 5.66E-01 

1p13.1 rs12039739 116134634 CASQ2 1.84E-03 CASQ2 8.03E-03 

1q22 rs2274317 154713527 MEF2D 1.16E-02 C1orf61 1.56E-02

1q23.3 rs12036340 160282364 NOS1AP 2.02E-01 NOS1AP 7.40E-03

1q32.1 rs10920184 199605519 TNNT2 4.75E-06 TNNT2 6.92E-06 

1q32.1 rs4288653 202532651 PLEKHA6 9.78E-01 PLEKHA6 7.82E-01 

2p23.3 rs6710065 26930061 MAPRE3 6.54E-01 MAPRE3 6.95E-01 

2p22.2 rs3770770 37046370 STRN 1.64E-01 STRN 4.75E-01 

2q31.2 rs3816849 179375335 TTN 1.23E-02 TTN 1.92E-02 

3p22.2 rs6801957 38742319 SCN10A 7.68E-01 SCN10A 6.46E-01

3p21.1 rs4687718 53257343 DCP1A 1.05E-01 DCP1A 9.63E-01

3p14.1 rs2242285 66514292 MAGI1 4.53E-01 MAGI1 2.55E-01

3p14.1 rs13314892 69877742 MITF 2.25E-03 MITF 1.81E-02 

3q27.2 rs10937226 186785579 SENP2 1.43E-01 SENP2 4.88E-01 

4p15.31 rs1344852 19793035 SLIT2 1.02E-01 SLIT2 1.73E-01 

5q33.2 rs13185595 153852363 HAND1 3.41E-02 HAND1 1.90E-01 

6p21.31 rs1321311 36730878 CDKN1A 6.15E-02 CDKN1A 1.00E-01

6p21.1 rs1015150 41767282 TFEB 2.91E-03 TFEB 2.38E-02

6q22.31 rs11153730 118774215 PLN 3.11E-04 PLN 8.27E-05 

7p14.3 rs1419856 35273508 TBX20 1.32E-03 TBX20 2.83E-02 

7p12.3 rs6968945 46607425 N/A N/A N/A N/A 

7q31.2 rs11773845 115978537 CAV1 4.03E-04 CAV1 7.34E-04 

8q24.13 rs4367519 124735610 FBXO32 1.58E-02 C8ORFK36 7.08E-01 

8q24.13 rs10105974 125923696 MTSS1 7.94E-01 MTSS1 4.72E-01 

10q21.1 rs1733724 53893983 DKK1 1.23E-02 DKK1 2.66E-02
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10q21.3 rs12414364 67674620 CTNNA3 1.74E-02 CTNNA3 1.80E-01 

10q21.3 rs10509289 68951501 CTNNA3 1.74E-02 CTNNA3 1.80E-01 

10q22.2 rs7099599 75157087 MYOZ1 2.56E-01 CAMK2G 7.02E-02 

10q25.2 rs7918405 114495455 VTI1A 9.85E-01 VTI1A 9.81E-01 

11p11.2 rs2269434 47316988 MYBPC3 1.05E-04 MYBPC3 5.97E-04

11q12.2 rs174577 61361390 FADS2 9.75E-01 FADS1 8.42E-01

12q13.13 rs736825 52703843 HOXC10 4.47E-01 HOXC9 8.28E-01 

12q13.3 rs2926743 55400367 RBMS2 9.95E-01 RBMS2 9.99E-01 

12q24.21 rs7132327 113865454 TBX3 1.00E-02 TBX3 6.01E-03 

13q14.13 rs1408224 46113219 LRCH1 1.72E-01 LRCH1 1.04E-01 

13q22.1 rs728926 73411123 KLF12 8.17E-01 KLF12 4.86E-01 

14q24.2 rs12880291 70954320 SIPA1L1 1.67E-01 SIPA1L1 1.44E-01

15q25.3 rs7183401 83172948 ALPK3 6.07E-02 ALPK3 3.58E-05

15q26.3 rs8038015 97080797 IGF1R 8.36E-02 IGF1R 6.69E-02 

16q23.3 rs6565060 81307552 CDH13 1.96E-02 CDH13 4.45E-02 

17q11.2 rs7211246 25509888 SLC6A4 5.05E-01 SLC6A4 3.63E-01 

17q21.31 rs242562 41382599 MAPT 2.70E-01 MAPT 1.25E-01 

17q24.2 rs9912468 61748819 PRKCA 1.49E-01 PRKCA 1.21E-01 

18q12.1 rs617759 30976867 MAPRE2 2.74E-01 MAPRE2 6.98E-01

18q12.2 rs879568 32565657 BRUNOL4 5.97E-01 FHOD3 7.35E-01

18q12.3 rs10853525 40690650 SETBP1 4.45E-01 SETBP1 4.87E-01

20p12.3 rs3929778 6408290 BMP2 1.09E-01 BMP2 4.98E-01 

20q11.22 rs2025096 33003661 ITCH 6.14E-01 MYH7B 1.90E-01 

21q21.1 rs7283707 16048865 USP25 9.24E-01 USP25 8.80E-01 

21q21.3 rs13047360 27773451 N/A N/A N/A N/A 
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14. Table S14. Canonical pathway analysis. 
Canonical pathways analysis using the IPA software tool (IPA, Ingenuity Systems, CA, USA). The IPA Knowledge Base was used 

to explore the functional relationship between proteins encoded by the 67 candidate genes identified at the 52 loci associated with 

QRS traits. Genes were analysed for direct interactions only and networks were generated with a maximum size of 35 molecules. 
Core Genes Additional Genes P-value Top Functions 

24genes:  CAMK2G, CAV1, CDKN1A, 

CDKN2C, DKK1, FBXO32, HAND1, IGF1R, 

KLHL38, MAPT, MEF2D, MITF, MTSS1, 

MYBPC3, MYH7B, NACA, PLN, PRKCA, STRN,  

TBX3, TFEB, TNNT2, TNS3, TTN 

Akt, Calmodulin, G protein alphai, Histone H3, 

Hsp90, Myosin, PI3K (complex), RNA polymerase II, 

SRC (family) 

10 -56 Cardiovascular System 

Development and Function, 

Organ Morphology, Skeletal 

and Muscular System 

Development and Function 

16 genes:  ADAMTS5, DPYSL5, FADS2, 
HOXC4, HOXC5, KLF12, LRCH1, MAPRE2, 
NFIA, NR1H3, SEC24C, SENP2, SLIT2, TKT, 
USP25, VTI1A 
 

APP, C18orf21, C1orf110, C1orf131, C9orf41, 

C9orf142, CHAC2, DDHD2, METTL8, MRPL35, 

PASD1, RABL3, RNASE11, SBNO1, SUMO2, SUN5, 

TBCC, UBC, ZNF720 

10-33 Nervous System Development 

and Function, Organ 

Morphology, Organismal 

Development 

13 genes: ACP2, CASQ2, CEP85L, CTNNA3, 

EDEM2, GSS, LRIG1, MADD, NSRP1, SETBP1, 

SLC25A26, TBX20, TMEM258 

ANKLE2, ATP8A1, CALR, CTAG1A/CTAG1B, FAIM, 

GJC1, ISYNA1, KIAA1147, LCMT1, NUBP1, PP1R11, 

PPP1R14B, PPP2CA, PRR14, PRR14L, PXYLP1, 

RTFDC1, SPRY2, THUMPD1, TRIM51, UBC, VPS13D 

10-26 Cell Signaling, Small Molecule, 

Biochemistry, Vitamin and 

Mineral Metabolism 

10 genes: BMP2, CDH13, FHOD3, HOXC6, 

PLEKHA6, SCN10A, SIPA1L1, SYNPO2L, 

ZNF436 

ACTB AJAP1, BCL9L, BMP8A, CDH4, CDH6-10, 

CHD16, CDH18, COL27A1, CREB1, Ctnna, CTNNB1, 

DENND2A, DLG4, DSC3, ERMN, EZH2, GPR63, 

GPR123, PCDH20, PDE1C, SCN3B, UBD  

10-16  Cancer, Dermatological 

diseases and Conditions, 

Organismal Injury and 

Abnormalities 
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15. Table S15. Top biological functions of candidate genes using the IPA 
software tool. 
 

Biological functions P-value range 

Candidate 

genes (N) 

Diseases and Disorders   

Cardiovascular Disease 7.29E-09 - 3.20E-03 22 

Organismal Injury and Abnormalities 7.29E-09 - 3.20E-03 62 

Cancer 2.63E-09 - 3.20E-03 61 

Gastrointestinal Disease 2.63E-09 - 3.20E-03 50 

Developmental Disorder 3.83E-09 - 3.20E-03 25 

 

Molecular and Cellular Functions   

Cellular Function and Maintainance 1.53E-08 - 3.20E-03 22 

Cell Morphology 2.02E-08 - 3.20E-03 27 

Cellular Assembly and Organization 2.22E-07 - 3.20E-03 23 

Cellular Development 2.22E-07 - 3.20E-03 31 

Cell Growth and Proliferation 2.22E-07 - 3.20E-03 35 

 

Physiological System Development and Function   

Skeletal and Muscular System Development and Function 1.54E-09 - 3.20E-03 29 

Cardiovascular System Development and Function 1.72E-09 - 3.20E-03 29 

Organ Morphology 1.72E-09 - 3.20E-03 30 

Embryonic Development 5.43E-09 - 3.20E-03 30 

Organ Development 5.43E-09 - 3.20E-03 29 
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16. Table S16. Summary of known biology for the 67 candidate genes 
Cardiac phenotypes in humans are highlighted (red). 

 
Region SNP GENE Mouse 

homolog 

KO 

avail

able 

Mouse 

Pheno 

OMIM Gene summary 

1p36.12 rs2849028 ZNF436 Zfp46 0   May be a negative regulator in gene transcription mediated by the 

MAPK signaling pathways.97 Highly expressed in human foetal brain 

and heart.97 

1p36.12 rs2849028 C1orf213  - 0   Putative uncharacterized protein. 

1p32.3 rs17391905 CDKN2C Cdkn2c 1 1  A member of the INK4 family of cyclin-dependent kinase inhibitors. 

This protein has been shown to interact with CDK4 or CDK6, and 

prevent the activation of the CDK kinases, thus function as a cell 

growth regulator that controls cell cycle G1 progression.98 May play a 

role in hypoplastic left heart syndrome.99 

1p31.3 rs2207790 NFIA Nfia 1   Dimeric DNA-binding protein, function as cellular transcription factors 

and as replication factors for adenovirus DNA replication.100 

1p13.1 rs12039739 CASQ2 Casq2 1 1 Ventricular 

tachycardia, 

catecholaminergi

c polymorphic, 2 

Specifies the cardiac muscle family member of the calsequestrin 

family, which are calcium-binding proteins of the sarcoplasmic 

reticulum. The release of calsequestrin-bound calcium triggers muscle 

contraction.101 Mutations can cause abnormal intracellular calcium 
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(MIM:611938) regulation and can facilitate the development of tachyarrhythmias.102

1q22 rs2274317 MEF2D Mef2d 1 1 Transcriptional activator which binds specifically to the MEF2 

element, 5'-YTA[AT](4)TAR-3', found in numerous muscle-specific, 

growth factor- and stress-induced genes. Plays diverse roles in the 

control of cell growth, survival and apoptosis via p38 MAPK signaling 

in muscle-specific and/or growth factor-related transcription.103,104 

1q23.3 rs12036340 OLFML2B Olfml2b 0   Olfactomedin-like protein 2B. Function unknown. 

1q32.1 rs10920184 TNNT2 Tnnt2 1 1 Cardiomyopathy, 

dilated, 1D 

(MIM:601494); 

Cardiomyopathy, 

familial 

hypertrophic, 

2(MIM:115195); 

Cardiomyopathy, 

familial 

restrictive, 

3(MIM:612422); 

Left ventricular 

noncompaction 

6(MIM:601494) 

tropomyosin-binding subunit of the troponin complex, the thin 

filament regulatory coplex which regulates muscle contraction in 

response to alterations in intracellular calcium ion concentration. 

Mutations in this gene cause familial forms of hypertrophic105, 

dilated106 and restrictive cardiomyopathies107.  

1q32.1 rs4288653 PLEKHA6 Plekha6 0   Pleckstrin homology domain containing, family A member 6. Function 
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unknown. 

2p23.3 rs6710065 DPYSL5 Dpysl5 1 Encodes a member of the CRMP (collapsing response mediator 

protein) family thought to be involved in neural development 

(RefSeq). 

2p22.2 rs3770770 STRN Strn 0   Encodes a calmodulin-binding protein which may function as 

scaffolding or signaling protein and may play a role in (dendritic) Ca2+ 

signaling.108 Striatin can directly bind to CAV1.109 

2q31.2 rs3816849 TTN Ttn 1 1 Cardiomyopathy, 

dilated, 1G 

(MIM:604145); 

Cardiomyopathy, 

familial 

hypertrophic, 9 

(MIM:613765); 

Muscular 

dystrophy, limb-

girdle, type 2J 

(MIM:608807); 

Myopathy, early-

onset, with fatal 

cardiomyopathy 

(MIM:611705); 

A large abundant protein of striated muscle. A N-terminal Z-disc 

region and a C-terminal M-line region bind to the Z-line and M-line of 

the sarcomere respectively so that a single titin molecule spans half 

the length of a sarcomere. Titin also contains binding sites for muscle-

associated proteins so it serves as an adhesion template for the 

assembly of contractile machinery in muscle cells. It has also been 

identified as a structural protein for chromosomes. Considerable 

variability exists in the I-band, the M-line and the Z-disc regions of 

titin. Variability in the I-band region contributes to the differences in 

elasticity of different titin isoforms and, therefore, to the differences 

in elasticity of different muscle types. Mutations are the cause of 

several hereditary myopathies110,111, familial hypertrophic112 and 

dilated cardiomyopathies55,113. 
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Myopathy, 

proximal, with 

early respiratory 

muscle 

involvement 

(MIM;603689); 

Tibial muscular 

dystrophy, 

tardive 

(MIM:600334) 

3p22.2 rs6801957 SCN10A Scn10a 1   A tetrodotoxin-resistant voltage-gated sodium channel subunit 

initially known from and primarily found in the peripheral sensory 

nervous system.114 Recently the gene has also been identified in 

intracardiac neurons contributing to regulation of cardiac electric 

activity115,116 

3p21.1 rs4687718 TKT Tkt 1 1 A thiamine-dependent enzyme which plays a role in the channeling of 

excess sugar phosphates to glycolysis in the pentose phosphate 

pathway117 

3p14.1 rs2242285 LRIG1 Lrig1 1   Act as a feedback negative regulator of signaling by receptor tyrosine 

kinases, through a mechanism that involves enhancement of receptor 

ubiquitination and accelerated intracellular degradation.118 

3p14.1 rs2242285 SLC25A26 Slc25a26 1   A member of the mitochondrial solute carriers shutteling metabolites, 
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nucleotides, and cofactors through the mitochondrial inner 

membrane.119 

3p14.1 rs13314892 MITF Mitf 1  Tietz albinism-

deafness 

syndrome 

(MIM:103500); 

Waardenburg 

syndrome, type 

2A 

(MIM:193510); 

Waardenburg 

syndrome/ocular 

albinism, digenic 

(MIM:103470); 

Melanoma, 

cutaneous 

malignant, 

susceptibility to, 8 

(MIM:614456) 

A basic helix-loop-helix leucine zipper transcription factor involved in 

melanocyte120 and osteoclast development.121 Mutations in this gene 

cause auditory-pigmentary syndromes. 

3q27.2 rs10937226 SENP2 Senp2 1 1  Small ubiquitin-like protein that process newly synthesized SUMO1 

into the conjugatable form and catalyze the deconjugation of SUMO1-

containing species.(RefSeq) Overexpression of SENP2 resulted in 
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premature death of mice with CHDs-atrial septal defects (ASDs) 

and/or ventricular septal defects (VSDs).122 

4p15.31 rs1344852 SLIT2 Slit2 1   May have a role in axon guidance as repulsive ligands for Roundabout 

receptors.123 

5q33.2 rs13185595 HAND1 Hand1 1 1  Belongs to the basic helix-loop-helix family of transcription factors. 

This gene product is one of two closely related family members, the 

HAND proteins, which are asymmetrically expressed in the developing 

ventricular chambers and play an essential role in cardiac 

morphogenesis. Working in a complementary fashion, they function in 

the formation of the right ventricle and aortic arch arteries, 

implicating them as mediators of congenital heart disease. HAND1 

mutations have been reported in Chinese patients with VSD.124 

HAND1 deficient mice display defects in the left ventricle and 

endocardial cushions, and exhibited dysregulated ventricular gene 

expression.125 

6p21.31 rs1321311 CDKN1A Cdkn1a 1 A potent cyclin-dependent kinase inhibitor. The encoded protein 

binds to and inhibits the activity of cyclin-CDK2 or -CDK4 complexes, 

and thus functions as a regulator of cell cycle progression at G1. The 

expression of this gene is tightly controlled by the tumor suppressor 

protein p53.126 

6p21.1 rs1015150 TFEB Tfeb 1   Transcription factor that specifically recognizes and binds E-box 

sequences (5'-CANNTG-3') and CLEAR-box sequence (5'-GTCACGTGAC-
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3') present in the regulatory region of many lysosomal genes, leading 

to activate their expression.127 TFEB overexpression in cultured cells 

induces lysosomal biogenesis and increases degradation of complex 

molecules, including glycosaminoglycans and other pathogenic 

proteins. Some lysosomal storage disorders are known to affect the 

heart, including Anderson-Fabry and Pompe disease for the latter 

TFEB is considered a therapeutic target.128  Homozygotes mice for a 

targeted null mutation exhibit severe defects in placental 

vascularization with few vessels entering the placenta and little 

branching. Mutants die between embryonic days 9.5 and 10.5. 

6q22.31 rs11153730 PLN Pln 1 1 Cardiomyopathy, 

dilated, 

1P(MIM:609909); 

Cardiomyopathy, 

familial 

hypertrophic, 

18(MIM:613874)  

A major substrate for the cAMP-dependent protein kinase in cardiac 

muscle. The encoded protein is an inhibitor of cardiac muscle 

sarcoplasmic reticulum Ca(2+)-ATPase in the unphosphorylated state, 

but inhibition is relieved upon phosphorylation of the protein. The 

subsequent activation of the Ca(2+) pump leads to enhanced muscle 

relaxation rates, thereby contributing to the inotropic response 

elicited in heart by beta-agonists.129 Mutations in this gene are a cause 

of inherited human dilated cardiomyopathy with refractory congestive 

heart failure.130 

6q22.31 rs11153730 SLC35F1 Slc35f1 0   Solute carrier family 35 member F1. Function unknown. 

6q22.31 rs11153730 CEP85L Cep85l 0   Centrosomal protein 85kDa-like. Function unknown. 

7p14.3 rs1419856 TBX20 Tbx20 1 1 Atrial septal Transcription factor essential for heart development. Tbx20 physically 
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defect 4 

(MIM:611363) 

interacted with cardiac transcription factors Nkx2-5, GATA4, and 

GATA5, collaborating to synergistically activate cardiac gene 

expression.131 Mutations in this gene are associated with diverse 

cardiac pathologies, including defects in septation, valvulogenesis and 

cardiomyopathy.132 

7p12.3 rs6968945 TNS3 Tns3 1   Tensins are intracellular proteins thought to act as links between the 

extracellular matrix and the cytoskeletion. TNS3 also interacts with 

the EGF receptor.133 

7q31.2 rs11773845 CAV1 Cav1 1 1 Lipodystrophy, 

congenital 

generalized, type 

3 (MIM:612526) 

Main component of the caveolae plasma membranes found in most 

cell types and links integrin subunits to the tyrosine kinase FYN, an 

initiating step in coupling integrins to the Ras-ERK pathway and 

promoting cell cycle progression.The gene is a tumor suppressor gene 

candidate and a negative regulator of the Ras-p42/44 mitogen-

activated kinase cascade. Has been implicated in the 

compartmentalization and regulation of certain signalling events, 

including TGF-beta134 and eNOS.135 Cav-1/3 dKO mice develop a 

severe cardiomyopathy.136 

8q24.13 rs4367519 FBXO32 Fbxo32 1   Subunits of the ubiquitin protein ligase complex with function in 

phosphorylation-dependent ubiquitination. Probably recognizes and 

binds to phosphorylated target proteins during skeletal muscle 

atrophy.137 Is highly expressed during muscle atrophy, whereas mice 

deficient in this gene were found to be resistant to atrophy.  
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8q24.13 rs4367519 KLHL38 Klhl38 0 Kelch-like protein 38. Function unknown.

8q24.13 rs10105974 MTSS1 Mtss1 1 Putative metastasis suppressor protein, which is implicated in actin 

cytoskeletal control and interaction with protein tyrosine 

phosphatase.138 

10q21.1 rs1733724 DKK1 Dkk1 1   Is involved in embryonic development through its inhibition of the 

WNT signaling pathway by inhibiting LRP5/6 interaction.139 

10q21.3 rs12414364, 

rs10509289 

CTNNA3 Ctnna3 1* 1*  Localizes to intercalated disks of cardiomyocytes and peritubular 

myoid cells of testis, and Colocalizes with CTNNA1 and CTNNA2. May 

be involved in formation of stretch-resistant cell-cell adhesion 

complexes.140 Mouse Ctnna3 deficient mice exhibit progressive 

cardiomyopathy (model yet not included in MGI).141  

10q22.2 rs7099599 SEC24C 

 

Sec24c 0   Involved in vesicle trafficking. Component of the COPII coat, that 

covers ER-derived vesicles involved in transport from the ER to Golgi 

apparatus and may be implicated in cargo selection and 

concentration.142 

10q22.2 rs7099599 SYNPO2L Synpo2l 0 Cytoskeletal protein highly expressed in the Z-disc of the heart and 

skeletal muscle, associates with actin and interacts with alpha-actinin. 

Kockdown in zebrafish resulted in aberrant heart and skeletal muscle 

development, disorganized sarcomeres and diminished cardiac 

contractility.143 

10q22.2 rs7099599 CAMK2G Camk2g 1   Calcium/calmodulin-dependent protein kinase II (CaM kinase II) is a 

ubiquitous serine/threonine protein kinase that has been implicated 
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in diverse effects of hormones and neurotransmitters that utilize 

Ca(2+) as a second messenger.  A mouse model of cardiac Camk2 

inhibition demonstrated substantial prevention of maladaptive 

remodeling from excessive beta-adrenergic receptor stimulation and 

myocardial infarction, and induction of balanced changes in 

excitation-contraction coupling that preserved baseline and beta-

adrenergic receptor-stimulated physiologic increases in cardiac 

function.144 

10q25.2 rs7918405 VTI1A Vti1a 1 V-SNARE that mediates vesicle transport pathways through 

interactions with t-SNAREs on the target membrane. Along with 

VAMP7, involved in a non-conventional RAB1-dependent traffic route 

to the cell surface used by voltage-gated potassium (Kv) channel-

interacting protein 1 (KCNIP1) and potassium voltage-gated channel, 

Shal-related subfamily, member 2 (KCND2).145  

11p11.2 rs2269434 MYBPC3 Mybpc3 1 1 Cardiomyopathy, 

dilated(MIM:1152

00); 

Cardiomyopathy, 

familial 

hypertrophic, 

4(MIM:115197)  

Cardiac isoform of myosin-binding protein C, a myosin-associated 

protein found in the cross-bridge-bearing zone (C region) of A bands 

in striated muscle. Regulatory phosphorylation by cAMP-dependent 

protein kinases upon adrenergic stimulation is linked to modulation of 

cardiac contraction.146 

11p11.2 rs2269434 NR1H3 Nr1h3 1   NR1 subfamily of the nuclear receptor superfamily. Plays an important 
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role in cholesterol homeostasis, regulation of cholesterol uptake. 

Regulate renin expression in vivo by interacting with the renin 

promoter and is required for the adrenergic control of the renin-

angiotensin system147 and might be involved in cardiac 

hypertrophy.148 

11p11.2 rs2269434 ACP2 Acp2 1   beta subunit of lysosomal acid phosphatase (LAP), which is found in all 

tissues and is widely used as a biochemical marker for lysosomes. 

11p11.2 rs2269434 MADD Madd 1 Domain-containing adaptor protein that interacts with the death 

domain of TNF-alpha receptor 1 to activate mitogen-activated protein 

kinase (MAPK) and propagate the apoptotic signal. Plays a significant 

role in regulating cell proliferation, survival and death through 

alternative mRNA splicing.149 

11q12.2 rs174577 FADS2 Fads2 1   A member of the fatty acid desaturase (FADS) gene family. 

Component of a lipid metabolic pathway that catalyzes the 

biosynthesis of highly unsaturated fatty acids from precursor essential 

polyunsaturated fatty acids, linoleic acid, and alpha-linolenic acid. 

11q12.2 rs174577 TMEM258 Tmem258 0 Uncharacterized protein.

12q13.13 rs736825 HOXC4 Hoxc4 1   Homeoprotein of the HOX family, expressed in activated and/or 

proliferating lymphocytes of the T-, B-, or NK-cell lineage.150 This 

protein expands human hematopoietic immature cells ex vivo and 

improves the level of in vivo engraftmen, possibly by regulating 

factors involved in stem cell fate or expansion.151 
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12q13.13 rs736825 HOXC5 Hoxc5 1 Homeoprotein of the HOX family, regulated during embryogenesis 

and activated by retinoic acid in cultured embryonal carcinoma 

cells.152 

12q13.13 rs736825 HOXC6 Hoxc6 1   Homeoprotein of the HOX family, plays a key role in a variety of 

developmental processes including heart development153.  

12q13.3 rs2926743 NACA Naca 1 1  An isoform of this gene is specifically expressed in myotubes. NACA is 

converted into a tissue-specific DNA-binding activator, suggesting that 

this regulation may be an important event in the proper control of 

gene expression during myogenic differentiation154. Knockdown of 

Naca by antisense oligos in zebrafish embryos results in skeletal 

muscle defects155. NACA degradation also triggers ER stress responses 

and initiates apoptotic processes in hypoxic cells156.  

12q24.21 rs7132327 TBX3 Tbx3 1 1 Ulnar-mammary 

syndrome 

(MIM:181450) 

Transcription factors involved in the regulation of developmental 

processes, it is thought to play a role in the anterior/posterior axis of 

the tetrapod forelimb157. TBX3 is important in heart development; it is 

involved in atrioventricular myocardial development and endocardial 

cushion formation 158 and induces important pacemaker properties in 

cardiomyocytes159. Mutations in TBX3 cause Ulnar-mammary 

syndrome160. 

13q14.13 rs1408224 LRCH1 Lrch1 0   This gene contains leucine-rich repeats and a calponin homology 

domain, its function is unknown, but this gene has been associated 

with knee osteoarthritis161. 
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13q22.1 rs728926 KLF12 Klf12 0 Member of the Kruppel-like zinc finger protein family, can repress 

expression of the AP-2 alpha gene by binding to a specific site in the 

AP-2 alpha gene promoter.162 AP-2alpha is important in neural crest 

differentiation and development163 and gene expression levels are 

also increased in in human failing myocardium where it may trigger 

apoptosis164. 

14q24.2 rs12880291 SIPA1L1 Sipa1l1 0   Signal-induced proliferation-associated 1 like 1. Function unknown. 

15q25.3 rs7183401 ALPK3 Alpk3 1* 1* Plays a role in myocyte differentiation165. ALPK3 deficient mice 

develop a predominant hypertrophic cardiomyopathy with reduced 

cardiac function and impaired contractility166. 

15q26.3 rs8038015 IGF1R Igf1r 1 1 Insulin-like 

growth factor I, 

resistance to 

(MIM:270450) 

This receptor binds insulin-like growth factor with a high affinity.  It is 

regulated by p53 and impairment of its function causes apoptosis of 

tumor cells and inhibition of tumor growth in animal models167.  

Endogenous IGF-IR signaling is required for conservation of cardiac 

function of the aging heart, but not for the integrity of cardiac 

structure and function of young hearts168. Igf signalling is important 

for heart development and myocardial regeneration in zebrafish.169 

Patients with mutation in this gene have intrauterine growth 

retardation and short stature170. 

16q23.3 rs6565060 CDH13 Cdh13 0   Atypical member of the cadherin family because it lacks the 

transmembrane and intracellular domains and is attached to the 

plasma membrane via a glycosylphosphatidylinositol anchor. This 
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gene is expressed in endothelial and smooth muscle cells, and is an

adiponectin receptor171. In vascular tissue, this gene is up-regulated in 

vivo under disease conditions associated with oxidative stress and 

concomitant cell migration, proliferation and apoptosis/survival172. 

17q11.2 rs7211246 NSRP1 Ccdc55 1   A nuclear speckle-related protein that is a splicing regulator and 

essentially required in early stages of embryonic development173. 

17q11.2 rs7211246 EFCAB5 Efcab5 0   EF-hand calcium binding domain 5. The EF hand is a helix-loop-helix 

structural domain or motif found in a large family of calcium-binding 

proteins. 

17q21.31 rs242562 MAPT Mapt 1 Dementia, 

frontotemporal, 

with or without 

parkinsonism 

(MIM:600274); 

Pick disease 

(MIM:172700); 

Supranuclear 

palsy, progressive 

(MIM:601104); 

Supranuclear 

palsy, progressive 

atypical 

The neuron-specific transcript undergoes complex alternative splicing 

(PMID: 1420178), depending on stage of neuronal maturation and 

neuron type. This gene is a major regulator of microtubule formation 

in cells174. Patients with a microdeletion spanning this gene, suffer 

from typical facial appearance, cardiac and renal defects, and speech 

delay in addition to intellectual disability, hypotonia and seizures175. 
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(MIM:260540); 

Tauopathy and 

respiratory 

failure, Parkinson 

disease, 

susceptibility to 

(MIM:168600) 

17q24.2 rs9912468 PRKCA Prkca 1 1 Serine/threonine kinase which has been implicated in a variety of 

cellular functions including proliferation, apoptosis, differentiation, 

motility, and inflammation176. Mice models have shown that it is a 

fundamental regulator of cardiac contractility and Ca(2+) handling in 

myocytes177. 

18q12.1 rs617759 MAPRE2 Mapre2 0   This gene is likely a component of the microtubule cytoskeleton in 

mammalian cells. Associating with the mitotic apparatus, EB1 may 

play a physiologic role connecting APC to cellular division, 

coordinating the control of normal growth and differentiation 

processes in the colonic epithelium178. 

18q12.2 rs879568 FHOD3 Fhod3 1 1  Member of the formin family of proteins that play pivotal roles in 

actin filament assembly, this protein is essential for myofibrillogenesis 

at an early stage of heart development179. Two splice variants of exist 

in a tissue-specific manner; the longer variant is the major form in the 

heart, whereas the kidney and brain predominantly express a shorter 
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protein180. 

18q12.3 rs10853525 SETBP1 Setbp1 0 Schinzel-Giedion 

midface 

retraction 

syndrome 

(MIM:269150) 

This gene binds to SET, a nuclear oncogene, which is involved in DNA 

replication and associated with leukemogenesis and tumorigenesis181. 

Mutations in this gene cause Schinzel-Giedion midface retraction 

syndrome, which includes congenital heart defects182. 

20p12.3 rs3929778 BMP2 Bmp2 1 1  Member of the TGF-beta supergene family, involved in bone and 

cartilage formation183. BMP2 is a critical factor for both 

extraembryonic and embryonic development184. The protein prevents 

apoptosis of myocytes by induction of Bcl-x(L) via a Smad1 pathway 

and without any hypertrophic effect on myocytes185. 

20q11.22 rs2025096 MYH7B Myh7b 0   This gene encodes a heavy chain of sarcomeric myosin II molecule, the 

major contractile protein of cardiac/striated muscle186.MYH7B is 

expressed in the myocardium187 The deducted 1,692-amino acid 

protein shares 71% identity with MYH7.188 A mutation in MYH7B has 

recently been linked to left ventricular non-compaction 

cardiomyopathy.189 

20q11.22 rs2025096 GSS Gss 1  Glutathione 

synthetase 

deficiency 

(MIM:266130); 

Hemolytic anemia 

Functions as a homodimer to catalyze the second step of glutathione 

biosynthesis, which is the ATP-dependent conversion of gamma-L-

glutamyl-L-cysteine to glutathione190. Mutations in this gene cause 

Glutathione synthetase deficiency, causing metabolic acidosis, 

hemolytic anemia, and mental retardation191. 
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due to 

glutathione 

synthetase 

deficiency 

(MIM:231900) 

20q11.22 rs2025096 EDEM2 Edem2 0   Regulates endoplasmic reticulum-associated glycoprotein 

degradation192,193 

21q21.1 rs7283707 USP25 Usp25 1 USP25 belongs to a complex family of deubiquitinating enzymes that 

specifically cleave ubiquitin conjugates on a great variety of 

substrates194. This protein has a heart and skeletal muscle specific 

isoform195. 

21q21.3 rs13047360 ADAMTS5 Adamts5 1   This enzyme functions as aggrecanase to cleave aggrecan, a major 

proteoglycan of cartilage196. Furthermore, it has been implicated in 

the regulation of proteoglycan turnover and lipoprotein retention in 

atherosclerosis197. ADAMTS5-deficient mice show altered cleavage of 

versican, a critical cardiac proteoglycan198. 

* models not included in the MGI database, not included in enrichment analysis 
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17. Table S17. Drosophila Adult Heart Phenotypes 
 
Human gene Drosophila Orthologue Similarity* phenotype P-value n 
ACP2 Acph-1 8 arrhythmicity 3.50E-03 15
   irregular SI rhythm 1.70E-02  
      
HAND1 Hand 5 reduced heart rate 4.00E-06 32 
   
NACA NACalpha 9 no adult heart formed   
      
IGF1R InR 8 irregular SI rhythm 5.00E-02 15 
   
MADD rab3-GEF 10 irregular SI rhythm 2.40E-04 14
   arrhythmicity 1.39E-03  
      
MEF2D Mef2 6 arrhythmicity 5.00E-09 49 
  constricted heart 4.00E-02
   irregular SI rhythm 4.00E-08  
   reduced contractility 4.00E-08  
   reduced heart rate 2.00E-09  
   
STRN Cka 8 arrhythmicity 4.40E-04 77 
   constricted heart 3.00E-09  
   irregular SI rhythm 3.00E-02  
  reduced contractility 2.00E-11
   reduced heart rate 5.00E-03  
      
TNS3 by 6 Arrhythmicity 6.00E-03 16 
  irregular SI rhythm 3.00E-02
      
NR1H3 EcR 7 deformed adult heart   
      
TBX20 Nmr1 9 Arrhythmicity 6.00E-08 16
  irregular SI rhythm 1.00E-06
   reduced contractility 7.00E-08  
   reduced heart rate 2.00E-05  
* DIOPT score (1-10; refers to the number of databases that report homology according to 

the method of Hu et al 56). SI – Systolic Interval; HP – Heart Period; Arrhythmicity - standard 

deviation of HP normalized to the HP; SI rhythm – standard deviation of SI, normalized to 

the SI 
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18. Table S18. Tissue and cell type enrichment analysis by DEPICT  
ONLINE XLS File 

 

19. Table S19. Significant reconstituted gene sets by DEPICT 
ONLINE XLS File  
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20. Table S20: Key words in enriched reconstituted gene sets by DEPICT.  
Comparison of the count of common key words in 404 gene set names with FDR < 5% with 

the respective count in 14,461 gene set names with FDR > 5%. 

 

key word N total N FDR < 5% N FDR > 5% % FDR < 5% % FDR > 5% 
all gene sets 14461 404 14057
protein complex 6011 183 5828 45.30% 41.46% 
Abnormal 1080 38 1042 9.41% 7.41% 
Muscle 141 36 105 8.91% 0.75% 
Heart 62 29 33 7.18% 0.23% 
Cardiac 45 27 18 6.68% 0.13% 
Morphology 571 26 545 6.44% 3.88% 
Development 340 25 315 6.19% 2.24% 
Cell 977 23 954 5.69% 6.79% 
Regulation 1274 18 1256 4.46% 8.94% 
Binding 336 18 318 4.46% 2.26% 

 

N = number of gene sets with FDR > or < 5% for each key word, % =  percentage of gene 

sets with FDR < 5% (or < 5%) for each key word relative to all gene sets with FDR < 5% (or 

< 5%)      
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21. Table S21. Gene prioritization by DEPICT 
ONLINE XLS File 

  



95 

 

23. Table S23. Genomic control inflation factors.  
 

 Cornell 

Sokolow-

Lyon 

Lead 

sum 

QRS 

duration 

Meta-analysis     

Europeans 1.083 1.108 1.089 1.039 

     

Individual cohorts     

AGES 1.068 1.049 1.069 1.037

ARIC 1.033 1.039 1.033 1.010

Bright 1.041 1.034 1.036 1.002 

Cilento 0.994 1.004 0.991 1.016 

CHS 1.014 1.025 1.012 1.021 

ERF 0.994 1.026 1.017 1.013 

FHS 1.020 1.034

FVG 1.023 0.998 1.014 0.989

Inchianti 0.989 1.021 0.988

KORA S4 1.004 1.001 1.002 1.011 

KORA F3    1.015 

Korcula 1.247 0.997 1.013 1.031 

LifeLines 1.044 1.032 1.042 1.024 

LOLIPOP_EW610 1.003 1.000  1.013 

LOLIPOP_EW_P  0.999 1.005 1.017

LOLIPOP_EW_A 0.970 0.979 0.997

MESA 1.018 1.022 1.027 1.036 

MICROS 1.005 0.997 0.995 1.001 

Orcades 0.996 1.011 1.006  

Orkney    0.998 

PREVEND 1.028 1.014 1.014 1.036 

PROSPER 1.045 1.081 1.033 1.026

RS1 1.026 1.017 1.020 1.013

RS2 1.021 1.010 1.008 1.016 

RS3 1.016 1.011 1.014  

Sardinia 1.055 1.096  1.085 



96 

 

SHIP 1.005 1.029 1.023 1.036 

Split 0.986 0.973 0.963 1.056 

Twins UK 0.996 1.027  1.021 

YFS 1.003 1.027 1.011 1.000 
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24. Table S24. Results of replication testing for the 35 loci associated 
with QRS phenotypes at 1x10-8<P<5x10-7 
Highlighted in green are the 11 loci that replicated; both P-value replication <0.05 and 

combined P <1×10-8. Highlighted in yellow 11 loci with combined P-value of 1×10-

8<P<5×10-8 or combined P <1×10-8 but replication P>0.05. 

 
      Discovery Replication Combined 

Region Position SNP Trait P N P N P N

1p36.32 3259183 rs6683273 Duration 1.60E-07 54926 6.69E-02 12785 3.40E-08 67711

1p36.22 11887303 rs7537765 Leadsum 2.38E-07 46246 2.46E-02 12806 1.79E-08 59052

1p36.11 26387423 rs2997447 Leadsum 1.85E-07 39724 4.10E-02 12820 2.36E-08 52544

1p13.1 116333111 rs12039739 Duration 4.10E-08 51205 7.33E-03 5183 6.51E-09 56388

1q23.3 162015740 rs12036340 Leadsum 2.51E-08 44291 1.86E-02 12801 1.49E-09 57092

2q31.1 175467769 rs1991601 Leadsum 1.85E-08 42755 9.62E-02 12791 6.34E-09 55546

3p25.2 12842223 rs4642101 Leadsum 3.74E-07 42533 4.27E-01 8276 6.99E-07 50809

3p14.1 69795052 rs13314892 Leadsum 4.17E-07 34683 5.18E-03 12785 8.93E-09 47468

4p15.31 20183937 rs1344852 Duration 9.33E-08 55781 2.10E-03 12760 1.21E-09 68541

4q26 120518064 rs17358860 cornell 1.08E-06 57212 1.99E-01 12746 1.28E-04 69958

5q35.2 173315866 rs359466 Sokolow 3.41E-07 54866 2.39E-02 12806 2.70E-08 67672

6p24.3 7502749 rs7771320 Leadsum 6.87E-08 31952 7.55E-02 12794 1.67E-08 44746

6p24.1 12159699 rs3777755 Leadsum 5.84E-08 33683 1.55E-01 12744 3.34E-08 46427

6p22.1 27413924 rs13195040 cornell 1.41E-07 58854 4.89E-02 12774 3.03E-08 71628

6p21.33 30787762 rs1264353 cornell 3.37E-07 48816 8.51E-01 12811 6.51E-06 61627

6p12.3 46629505 rs9296504 Sokolow 3.23E-07 55481 6.15E-01 12787 2.11E-06 68268

6q25.3 159893937 rs4708832 Duration 1.32E-07 60186 5.52E-02 12812 2.11E-08 72998

10p12.32 18695892 rs7909027 Sokolow 2.09E-07 54589 4.99E-02 12745 3.86E-08 67334

10q22.3 77891246 rs12764182 cornell 1.92E-07 53032 7.26E-01 12729 1.23E-06 65761

10q25.2 112491620 rs2419577 Sokolow 1.60E-06 43903 5.27E-01 12790 4.95E-06 56693

11p15.4 10342711 rs1562782 cornell 2.26E-07 55820 2.48E-01 12775 2.44E-07 68595

11p14.1 30502175 rs10488821 Leadsum 6.19E-07 40853 4.18E-01 12787 7.78E-07 53640

11q12.2 61604814 rs174577 Duration 1.54E-07 52290 1.63E-05 12779 4.28E-11 65069

12q21.31 82576220 rs10778876 cornell 2.79E-07 55138 8.22E-01 12784 3.11E-06 67922

13q14.13 47215218 rs1408224 Leadsum 2.69E-07 46149 1.76E-04 12818 3.60E-10 58967
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16p13.13 11688891 rs7198919 Sokolow 1.45E-06 41765 1.25E-02 12799 5.76E-08 54564

17p12 12593743 rs6502201 Sokolow 1.82E-06 54042 1.45E-01 12788 4.95E-04 66830

17q11.2 28485762 rs7211246 Leadsum 1.27E-06 46166 8.34E-04 12790 6.01E-09 58956

17q22 53373550 rs11079159 Duration 3.16E-07 60317 4.55E-01 12772 6.20E-07 73089

18p11.31 6615920 rs4638681 Sokolow 8.76E-07 20593 7.87E-01 12810 4.15E-04 33403

18q12.2 34311659 rs879568 Duration 9.83E-08 57040 2.83E-02 12752 8.45E-09 69792

20p12.3 6460290 rs3929778 cornell 9.49E-07 53072 1.62E-03 12799 6.42E-09 65871

20q11.22 33540000 rs2025096 cornell 5.14E-08 56012 1.35E-04 12770 4.51E-11 68782

21q21.1 17126994 rs7283707 Leadsum 3.31E-08 45147 3.39E-02 12805 3.76E-09 57952

21q21.3 30154239 rs11700980 Leadsum 1.45E-07 42401 3.37E-02 12759 1.61E-08 55160
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25. Table S25. Pearson correlation coefficients between QRS phenotypes  
 

Pearson correlation coefficients between QRS phenotypes amongst LifeLines sample (in 

green) and SNP associations (-log10[P] in the European analysis, in blue). 

 

QRS-duration 
12-lead sum 

product 

Sokolow-Lyon 

product 

Cornell  

product 

QRS-duration 0.20 0.15 0.16 

12-lead sum 

product 0.49 0.60 0.27 

Sokolow-Lyon 

product 0.31 0.80 0.13 

Cornell 

product 0.45 0.42 0.22 
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26. Table S26. Chromatin data of Roadmap epigenomics project 
evaluated.  
The number of each sample per experiment are indicated.  

 
Chromatin state 

Sample name 

H3K2

7ac 

H3K27

me3 

H3K36

me3 

H3K4

me1 

H3K4

me3 

H3K9

me3 

Adipose Nuclei 1 5 5 5 5 5 

Adipose Tissue 1 0 0 0 0 0 

Adrenal Gland 1 0 0 0 0 1 

Adult Kidney 0 0 2 2 2 2

Adult Liver 0 2 3 3 3 3

Aorta 1 1 1 0 0 1 

Bone Marrow Derived Mesenchymal Stem Cell 

Cultured Cells 0 4 4 4 4 4 

Brain Anterior Caudate 1 2 2 2 2 2 

Brain Cingulate Gyrus 1 1 2 2 2 2 

Brain Hippocampus Middle 2 2 3 3 3 3

Brain Inferior Temporal Lobe 1 2 2 2 2 2

Brain Mid Frontal Lobe 1 1 2 2 2 2

Brain Substantia Nigra 0 2 2 2 2 2 

Breast Luminal Epithelial Cells 0 1 1 1 0 1 

Breast Myoepithelial Cells 0 2 2 2 2 2 

CD19 Primary Cells 0 0 1 0 1 0 

CD3 Primary Cells 0 1 1 0 1 0

CD34 Primary Cells 0 1 1 0 0 0

CD4 Memory Primary Cells 2 2 2 2 3 2 

CD4 Naive Primary Cells 2 2 2 2 2 2 

CD4+ CD25- CD45RA+ Naive Primary Cells 1 1 1 1 1 1 

CD4+ CD25- CD45RO+ Memory Primary Cells 1 1 1 1 1 1 

CD4+ CD25- IL17- PMA-Ionomycin stimulated MACS 

purified Th Primary Cells 1 1 1 1 1 1 

CD4+ CD25- IL17+ PMA-Ionomcyin stimulated Th17 1 1 1 1 1 1
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Primary Cells 

CD4+ CD25- Th Primary Cells 0 1 1 1 1 1 

CD4+ CD25+ CD127- Treg Primary Cells 0 1 1 1 1 1 

CD4+ CD25int CD127+ Tmem Primary Cells 1 1 1 1 1 1 

CD8 Memory Primary Cells 1 2 2 2 2 2

CD8 Naive Primary Cells 2 3 3 3 3 3

Chondrocytes from Bone Marrow Derived 

Mesenchymal Stem Cell Cultured Cells 0 2 2 1 2 2 

Colon Smooth Muscle 0 1 2 1 2 1 

Colonic Mucosa 0 2 2 2 2 2 

Duodenum Mucosa 0 2 2 2 2 0 

Duodenum Smooth Muscle 1 1 1 1 1 1

Esophagus 1 1 1 1 1 1

Foetal Brain 0 4 3 4 3 4 

Foetal Heart 0 1 1 0 0 1 

Foetal Lung 0 1 1 2 0 1 

Left Ventricle 2 2 2 2 2 2 

Lung 1 0 0 1 1 1 

Mesenchymal Stem Cell Derived Adipocyte Cultured 

Cells 0 4 5 5 5 5 

Mobilized CD34 Primary Cells 3 8 7 6 6 7

Muscle Satellite Cultured Cells 0 3 3 3 3 3 

Neurosphere Cultured Cells Cortex Derived 0 2 2 2 1 2 

Neurosphere Cultured Cells Ganglionic Eminence 

Derived 0 2 2 2 1 2 

Pancreas 1 1 1 1 1 1

Pancreatic Islets 0 1 1 1 1 0

Penis Foreskin Fibroblast Primary Cells 1 3 3 3 3 2

Penis Foreskin Keratinocyte Primary Cells 1 3 3 3 3 2 

Penis Foreskin Melanocyte Primary Cells 1 3 3 3 3 3 

Psoas Muscle 1 1 0 0 0 0 

Rectal Mucosa 0 2 2 2 2 2 

Rectal Smooth Muscle 0 1 1 1 1 1 

Right Atrium 0 0 0 1 0 1
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Right Ventricle 1 1 0 0 0 0 

Sigmoid Colon 1 1 0 0 0 0 

Skeletal Muscle 1 3 3 3 3 3 

Small Intestine 1 1 1 0 0 0 

Spleen 1 1 1 1 1 1

Stomach Mucosa 0 1 1 1 1 1

Stomach Smooth Muscle 1 1 2 1 2 2 

Th17 Primary Cells 0 0 0 0 0 1 

Treg Primary Cells 0 1 1 0 1 1 
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27. Table S27. Mammalian Phenotype (MP) identifiers of the 154 
Mammalian Phenotypes queried. 
 
Mammalian Phenotype Identifier 

MP:0000266 MP:0002953 MP:0004124 MP:0006268 MP:0010432 MP:0010578 

MP:0000267 MP:0002972 MP:0004215 MP:0006321 MP:0010446 MP:0010579 

MP:0000268 MP:0003137 MP:0004251 MP:0008022 MP:0010447 MP:0010580 

MP:0000269 MP:0003141 MP:0004252 MP:0008772 MP:0010494 MP:0010592 

MP:0000270 MP:0003210 MP:0004484 MP:0008788 MP:0010498 MP:0010599 

MP:0000274 MP:0003221 MP:0004485 MP:0008823 MP:0010499 MP:0010612 

MP:0000275 MP:0003222 MP:0004486 MP:0008824 MP:0010500 MP:0010630 

MP:0000277 MP:0003223 MP:0004564 MP:0009328 MP:0010502 MP:0010631 

MP:0000278 MP:0003393 MP:0004565 MP:0009382 MP:0010503 MP:0010632 

MP:0000279 MP:0003394 MP:0004566 MP:0009416 MP:0010508 MP:0010633 

MP:0000280 MP:0003567 MP:0004567 MP:0009418 MP:0010513 MP:0010634 

MP:0000281 MP:0003898 MP:0004857 MP:0009863 MP:0010515 MP:0010636 

MP:0000304 MP:0003915 MP:0004937 MP:0010392 MP:0010516 MP:0010638 

MP:0001625 MP:0003916 MP:0005140 MP:0010393 MP:0010534 MP:0010640 

MP:0001627 MP:0003921 MP:0005294 MP:0010394 MP:0010535 MP:0010655 

MP:0002188 MP:0004032 MP:0005329 MP:0010402 MP:0010545 MP:0010656 

MP:0002189 MP:0004056 MP:0005330 MP:0010412 MP:0010546 MP:0010724 

MP:0002190 MP:0004057 MP:0005406 MP:0010413 MP:0010547 MP:0010725 

MP:0002625 MP:0004058 MP:0005598 MP:0010414 MP:0010548 MP:0010754 

MP:0002652 MP:0004060 MP:0005599 MP:0010415 MP:0010549 MP:0011264 

MP:0002740 MP:0004067 MP:0005600 MP:0010416 MP:0010555 MP:0011388 

MP:0002753 MP:0004084 MP:0005608 MP:0010417 MP:0010556 MP:0011390 

MP:0002795 MP:0004086 MP:0006085 MP:0010418 MP:0010560 MP:0011394 

MP:0002833 MP:0004116 MP:0006107 MP:0010419 MP:0010566 MP:0011395 

MP:0002834 MP:0004117 MP:0006113 MP:0010420 MP:0010567

MP:0002952 MP:0004123 MP:0006138 MP:0010421 MP:0010569
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Supplementary Figures 

Fig. S1. Layout of study design.  
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Fig. S2. Manhattan plots per QRS trait 
SF2.1 to SF2.4: Manhattan plots showing the results for genome-wide association with QRS traits amongst Europeans. SNPs 

reaching genome-wide significance (P<1×10-8).  

SF2.1: Cornell 
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SF2.2: Sokolow-Lyon 



116 

 

SF2.3: 12-leadsum 
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SF2.4: QRS duration 
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Fig. S3. Regional plots  
SF3.1 to SF3.52: regional plots for the QRS trait phenotype sentinel SNPs. At each region 

pairwise LD with the sentinel SNP is indicated. 
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Fig. S4. Venn diagram on the overlap of genetic loci among the 4 QRS 
traits 
 

Venn diagram shows the distribution of the 32 loci associated with a single trait and the 20 

loci associated with two or more phenotypes. All locus-phenotype associations are also 

presented in table S6. 
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Fig. S5. Enrichment of chromatin states in human fetal heart tissue 

To capture the greater complexity we performed an integrative analysis in an 15-state 

ChromHMM model representative of different functional regions of the genome. The left 

panel shows the enrichment of the 52 loci for the 15-state model using the five available 

core histone marks for human fetal heart tissue. The right panel shows the total number of 

the 52 loci overlapped by each feature. 
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Fig. S6. Histone modifications during cardiomyocyte differentiation.  
Enrichment of the 52 loci for histone modifications during cardiomyocyte differentiation 

(mouse). Enhancers are annotated by H3K4me1 peaks at least +/- 1kb away from an 

annotated TSS and designated as active or poised based on the presence (active) or 

absence (poised) of H3K27ac. 
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Fig. S7. Gene-expression data of candidate vs non-candidate genes. 
Within heart and muscle tissue microarray-based data the 63 (of 67) available candidate 

genes are significantly more highly expressed as compared to non-candidate genes.   
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Fig. S8. Gene expression patterns of candidate genes across different tissues 
Unsupervised hierarchical clustering of microarray-based expression levels of the candidate genes of 40 different tissues reveals 

that several genes are showing relatively high expression in heart and muscles. 
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Fig. S9. Gene-expression during cardiomyocyte differentiation.  
(a) The 54 (of 67) available candidate genes are highly expressed in RNA-seq data 

of cardiomyocytes, compared to non-candidate genes. (b) Unsupervised hierarchical 

clustering of RNA-seq based expression data of 54 candidate genes in 4 different 

cardiomyocyte (precursors) reveals that most of the genes are abundantly expressed in 

cardiomyocytes. 
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Fig. S10. Expected and observed fly and mouse models with cardiac 
phenotypes 
(a) Expected results of 1M permutations of 67 genes lead on average to cardiac 

phenotypes in 3.97 (SD 1.93) D. Melanogaster flies. We observed 9 Drosophila models 

(orthologues of SLIT2, NR1H3, HAND1, MYH7B, TTN, SLC25A26, FHOD3, NACA, and 

STRN) with cardiac phenotypes for our 67 candidate genes (P=1.84×10-2, obtained by 

using a normal distribution approximation with the abovementioned mean and standard 

deviation. We find P=1.69×10-2 without applying a normal distribution approximation.) (b) 

Expected results of 1M permutations of 67 genes lead on average to cardiac phenotypes in 

3.46 (SD 1.81) mice. We observed 18 mice with cardiac phenotypes for our 67 candidate 

genes (P=3.4×10-14 can only be obtained by using a normal approximation as the 

simulation did not report any event with 18 or more overlapping mouse orthologues.). 
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Fig. S11. eQTL and DNA functional data in the NR1H3-MYBDPC3 region 
Analysis of the 11p11.2 locus implicating NR1H3 as an additional candidate gene, next to MYBPC3, on the basis of strong eQTL, 

open chromatin and histone modifications. Diamond represents the lead SNP (rs2269434) in the region with in colour circles 

nearby SNPs and their LD to the sentinel and on the right y-axis the –log10(p-value) of association. In gray-shaded diamond and 

circles the eQTL association with NR1H3 with its corresponding p-value on the left y-axis. In the line-graph the tested functional 

elements are plotted for left ventricular tissue and foetal heart. At the bottom the genes are plotted. 
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Fig. S12. DEPICT correlation structure within left ventricular dilatation meta-gene set 
Example meta gene set “Left Ventricular Dilatation” consisting of 23 individual reconstituted gene sets. Gene sets are represented 

by nodes colored according to statistical significance, and similarities between them are indicated by edges scaled according to 

their correlation (only correlations with r>0.3 are shown). 
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Fig. S13. Further examples of cardiac in vivo enhancers 
Four cardiac in vivo enhancer correspond with our earlier work and have been published. For hs1912 (chr1:3251956-3256225) the 

embryo image is available27. We here provide representative embryo’s for 3 additional elements which have not been shown 

before23,27.  

 

 
 

 

 

 

 


