79 research outputs found

    The Development of an Empirical Model for Estimation of the Sensitivity to Heat Stress in the Outdoor Workers at Risk

    Get PDF
    Background: Workers who work in hot environments may be at risk for heat stress. Exposure to heat can result in occupational illnesses, including heat stroke, heat cramps, and heat exhaustion. The risk of exposure to heat depends on individual, environmental, and occupational risk factors. Individual risk factors may decrease the individual’s tolerance to heat stress. Sensitivity as an intrinsic factor may predispose a person to heat stress. Aim: This study was aimed to determine the criteria for sensitivity parameter, specify their weights using the fuzzy Delphi-analytical hierarchy, and finally providing a model to estimate sensitivity. The significant of the study is presenting a model to estimate the sensitivity to heat stress. Materials and Methods: The expert’s opinions were used to extract the criteria in Delphi method. After determining the weight of each criterion, Fuzzy analytic hierarchy Process (FAHP), by mathematical principles matrix and triangular fuzzy numbers, was applied for the prioritization of criteria. Results: According to experts’ viewpoints and considering some exclusion, 10 of 36 criteria were selected. Among 10 selected criteria, age had the highest percentage of responses (90% (27/30)) and its relative weight was 0.063. After age, the highest percentages of response were assigned to the factors of preexisting disease (66.6% (20/30)), body mass index (56.6% (17/30)), work experience (53.3% (16/30)), and clothing (40% (16/30)), respectively. Other effective criteria on sensitivity were metabolic rate, daily water consumption, smoking habits, drugs that interfere with the thermoregulatory processes, and exposure to other harmful agents. Conclusions: Eventually, based on the criteria, a model for estimation of the workers’ sensitivity to heat stress was presented for the first time, by which the sensitivity is estimated in percent.Keywords: Heat stress, Sensitivity, Personal factors, Fuzzy AH

    Ambient air quality standards and policies in eastern mediterranean countries: a review

    Get PDF
    Objectives: National ambient air quality standards (NAAQS) are critical tools for controlling air pollution and protecting public health. We designed this study to 1) gather the NAAQS for six classical air pollutants: PM(2.5), PM(10), O(3), NO(2), SO(2), and CO in the Eastern Mediterranean Region (EMR) countries, 2) compare those with the updated World Health Organizations Air Quality Guidelines (WHO AQGs 2021), 3) estimate the potential health benefits of achieving annual PM(2.5) NAAQS and WHO AQGs per country, and 4) gather the information on air quality policies and action plans in the EMR countries. Methods: To gather information on the NAAQS, we searched several bibliographic databases, hand-searched the relevant papers and reports, and analysed unpublished data on NAAQS in the EMR countries reported from these countries to the WHO/Regional office of the Eastern Mediterranean/Climate Change, Health and Environment Unit (WHO/EMR/CHE). To estimate the potential health benefits of reaching the NAAQS and AQG levels for PM(2.5), we used the average of ambient PM(2.5) exposures in the 22 EMR countries in 2019 from the Global Burden of Disease (GBD) dataset and AirQ+ software. Results: Almost all of the EMR countries have national ambient air quality standards for the critical air pollutants except Djibouti, Somalia, and Yemen. However, the current standards for PM(2.5) are up to 10 times higher than the current health-based WHO AQGs. The standards for other considered pollutants exceed AQGs as well. We estimated that the reduction of annual mean PM(2.5) exposure level to the AQG level (5 mug m(-3)) would be associated with a decrease of all natural-cause mortality in adults (age 30+) by 16.9%-42.1% in various EMR countries. All countries would even benefit from the achievement of the Interim Target-2 (25 mug m(-3)) for annual mean PM(2.5): it would reduce all-cause mortality by 3%-37.5%. Less than half of the countries in the Region reported having policies relevant to air quality management, in particular addressing pollution related to sand and desert storms (SDS) such as enhancing the implementation of sustainable land management practices, taking measures to prevent and control the main factors of SDS, and developing early warning systems as tools to combat SDS. Few countries conduct studies on the health effects of air pollution or on a contribution of SDS to pollution levels. Information from air quality monitoring is available for 13 out of the 22 EMR countries. Conclusion: Improvement of air quality management, including international collaboration and prioritization of SDS, supported by an update (or establishment) of NAAQSs and enhanced air quality monitoring are essential elements for reduction of air pollution and its health effects in the EMR

    A field indoor air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran

    Get PDF
    The coronavirus disease 2019 (COVID-19) emerged in Wuhan city, China, in late 2019 and has rapidly spread throughout the world. The major route of transmission of SARS-CoV-2 is in contention, with the airborne route a likely transmission pathway for carrying the virus within indoor environments. Until now, there has been no evidence for detection of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this may have implication for the potential spread of the COVID-19. We investigated the air of patient rooms with confirmed COVID-19 in the largest hospital in Iran, on March 17, 2020. To collect the SARS-CoV-2 particles, ten air samples were collected into the sterile standard midget impingers containing 20 mL DMEM with 100 μg/mL streptomycin, 100 U/mL penicillin and 1 antifoam reagent for 1 h. Besides, indoor particle number concentrations, CO2, relative humidity and temperature were recorded throughout the sampling duration. Viral RNA was extracted from samples taken from the impingers and Reverse-Transcription PCR (RT-PCR) was applied to confirm the positivity of collected samples based on the virus genome sequence. Fortunately, in this study all air samples which were collected 2 to 5 m from the patients' beds with confirmed COVID-19 were negative. Despite we indicated that all air samples were negative, however, we suggest further in vivo experiments should be conducted using actual patient cough, sneeze and breath aerosols in order to show the possibility of generation of the airborne size carrier aerosols and the viability fraction of the embedded virus in those carrier aerosols. © 2020 Elsevier B.V

    Short-term associations between daily mortality and ambient particulate matter, nitrogen dioxide, and the air quality index in a Middle Eastern megacity.

    Get PDF
    There is limited evidence for short-term association between mortality and ambient air pollution in the Middle East and no study has evaluated exposure windows of about a month prior to death. We investigated all-cause non-accidental daily mortality and its association with fine particulate matter (PM2.5), nitrogen dioxide (NO2), and the Air Quality Index (AQI) from March 2011 through March 2014 in the megacity of Tehran, Iran. Generalized additive quasi-Poisson models were used within a distributed lag linear modeling framework to estimate the cumulative effects of PM2.5, NO2, and the AQI up to a lag of 45 days. We further conducted multi-pollutant models and also stratified the analyses by sex, age group, and season. The relative risk (95% confidence interval (CI)) for all seasons, both sexes and all ages at lag 0 for PM2.5, NO2, and AQI were 1.004 (1.001, 1.007), 1.003 (0.999, 1.007), and 1.004 (1.001, 1.007), respectively, per inter-quartile range (IQR) increment (18.8??g/m3 for PM2.5, 12.6?ppb for NO2, and 31.5 for AQI). In multi-pollutant models, the PM2.5 associations were almost independent from NO2. However, the RRs for NO2 were slightly attenuated after adjustment for PM2.5 but they were still largely independent from PM2.5. The cumulative relative risks (95% CI) per IQR increment reached maximum during the cooler months, including: 1.13 (1.06, 1.20) for PM2.5 at lag 0-31 (for females, all ages); 1.17 (1.10, 1.25) for NO2 at lag 0-45 (for males, all ages); and 1.13 (1.07, 1.20) for the AQI at lag 0-30 (for females, all ages). Generally, the RRs were slightly larger for NO2 than PM2.5 and AQI. We found somewhat larger RRs in females, age group >65 years of age, and in cooler months. In summary, positive associations were found in most models. This is the first study to report short-term associations between all-cause non-accidental mortality and ambient PM2.5 and NO2 in Iran

    Advances in estimation by the item sum technique using auxiliary information in complex surveys

    Get PDF
    To collect sensitive data, survey statisticians have designed many strategies to reduce nonresponse rates and social desirability response bias. In recent years, the item count technique (ICT) has gained considerable popularity and credibility as an alternative mode of indirect questioning survey, and several variants of this technique have been proposed as new needs and challenges arise. The item sum technique (IST), which was introduced by Chaudhuri and Christofides (2013) and Trappmann et al. (2014), is one such variant, used to estimate the mean of a sensitive quantitative variable. In this approach, sampled units are asked to respond to a two-list of items containing a sensitive question related to the study variable and various innocuous, nonsensitive, questions. To the best of our knowledge, very few theoretical and applied papers have addressed the IST. In this article, therefore, we present certain methodological advances as a contribution to appraising the use of the IST in real-world surveys. In particular, we employ a generic sampling design to examine the problem of how to improve the estimates of the sensitive mean when auxiliary information on the population under study is available and is used at the design and estimation stages. A Horvitz-Thompson type estimator and a calibration type estimator are proposed and their efficiency is evaluated by means of an extensive simulation study. Using simulation experiments, we show that estimates obtained by the IST are nearly equivalent to those obtained using “true data” and that in general they outperform the estimates provided by a competitive randomized response method. Moreover, the variance estimation may be considered satisfactory. These results open up new perspectives for academics, researchers and survey practitioners, and could justify the use of the IST as a valid alternative to traditional direct questioning survey modes.Ministerio de Economía y Competitividad of SpainMinisterio de Educacion, Cultura y Deporteproject PRIN-SURWE

    Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO) - conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development.

    Get PDF
    In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection ofcomplement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complementC3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal braincortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mousemodel of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress,decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We alsofound that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increasedneurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancyoutcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complementactivation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads toneuropsychiatric disorders

    Transport injuries and deaths in the Eastern Mediterranean Region : findings from the Global Burden of Disease 2015 Study

    Get PDF
    Transport injuries (TI) are ranked as one of the leading causes of death, disability, and property loss worldwide. This paper provides an overview of the burden of TI in the Eastern Mediterranean Region (EMR) by age and sex from 1990 to 2015. Transport injuries mortality in the EMR was estimated using the Global Burden of Disease mortality database, with corrections for ill-defined causes of death, using the cause of death ensemble modeling tool. Morbidity estimation was based on inpatient and outpatient datasets, 26 cause-of-injury and 47 nature-of-injury categories. In 2015, 152,855 (95% uncertainty interval: 137,900-168,100) people died from TI in the EMR countries. Between 1990 and 2015, the years of life lost (YLL) rate per 100,000 due to TI decreased by 15.5%, while the years lived with disability (YLD) rate decreased by 10%, and the age-standardized disability-adjusted life years (DALYs) rate decreased by 16%. Although the burden of TI mortality and morbidity decreased over the last two decades, there is still a considerable burden that needs to be addressed by increasing awareness, enforcing laws, and improving road conditions.Peer reviewe

    Integrated Multi-Parameter Exploration Footprints of the Canadian Malartic Disseminated Au, McArthur River-Millennium Unconformity U, and Highland Valley Porphyry Cu Deposits: Preliminary Results from the NSERC-CMIC Mineral Exploration Footprints Research Network

    Get PDF
    Mineral exploration in Canada is increasingly focused on concealed and deeply buried targets, requiring more effective tools to detect large-scale ore-forming systems and to vector from their most distal margins to their high grade cores. A new generation of ore system models is required to achieve this. The Mineral Exploration Footprints Research Network is a consortium of 70 faculty, research associates, and students from 20 Canadian universities working with 30 mining, mineral exploration, and mining service providers to develop new approaches to ore system modelling based on more effective integration and visualization of multi-parameter geological-structural-mineralogical-lithogeochemical-petrophysical-geophysical exploration data. The Network is developing the next generation ore system models and exploration strategies at three sites based on integrated data visualization using self-consistent 3D Common Earth Models and geostatistical/machine learning technologies. Thus far over 60 footprint components and vectors have been identified at the Canadian Malartic stockwork-disseminated Au deposit, 20–30 at the McArthur-Millennium unconformity U deposits, and over 20 in the Highland Valley porphyry Cu system. For the first time, these are being assembled into comprehensive models that will serve as landmark case studies for data integration and analysis in the today’s challenging exploration environment

    Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Measurement of changes in health across locations is useful to compare and contrast changing epidemiological patterns against health system performance and identify specific needs for resource allocation in research, policy development, and programme decision making. Using the Global Burden of Diseases, Injuries, and Risk Factors Study 2016, we drew from two widely used summary measures to monitor such changes in population health: disability-adjusted life-years (DALYs) and healthy life expectancy (HALE). We used these measures to track trends and benchmark progress compared with expected trends on the basis of the Socio-demographic Index (SDI). METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2016. We calculated DALYs by summing years of life lost and years of life lived with disability for each location, age group, sex, and year. We estimated HALE using age-specific death rates and years of life lived with disability per capita. We explored how DALYs and HALE differed from expected trends when compared with the SDI: the geometric mean of income per person, educational attainment in the population older than age 15 years, and total fertility rate. FINDINGS: The highest globally observed HALE at birth for both women and men was in Singapore, at 75·2 years (95% uncertainty interval 71·9-78·6) for females and 72·0 years (68·8-75·1) for males. The lowest for females was in the Central African Republic (45·6 years [42·0-49·5]) and for males was in Lesotho (41·5 years [39·0-44·0]). From 1990 to 2016, global HALE increased by an average of 6·24 years (5·97-6·48) for both sexes combined. Global HALE increased by 6·04 years (5·74-6·27) for males and 6·49 years (6·08-6·77) for females, whereas HALE at age 65 years increased by 1·78 years (1·61-1·93) for males and 1·96 years (1·69-2·13) for females. Total global DALYs remained largely unchanged from 1990 to 2016 (-2·3% [-5·9 to 0·9]), with decreases in communicable, maternal, neonatal, and nutritional (CMNN) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). The exemplars, calculated as the five lowest ratios of observed to expected age-standardised DALY rates in 2016, were Nicaragua, Costa Rica, the Maldives, Peru, and Israel. The leading three causes of DALYs globally were ischaemic heart disease, cerebrovascular disease, and lower respiratory infections, comprising 16·1% of all DALYs. Total DALYs and age-standardised DALY rates due to most CMNN causes decreased from 1990 to 2016. Conversely, the total DALY burden rose for most NCDs; however, age-standardised DALY rates due to NCDs declined globally. INTERPRETATION: At a global level, DALYs and HALE continue to show improvements. At the same time, we observe that many populations are facing growing functional health loss. Rising SDI was associated with increases in cumulative years of life lived with disability and decreases in CMNN DALYs offset by increased NCD DALYs. Relative compression of morbidity highlights the importance of continued health interventions, which has changed in most locations in pace with the gross domestic product per person, education, and family planning. The analysis of DALYs and HALE and their relationship to SDI represents a robust framework with which to benchmark location-specific health performance. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform health policies, health system improvement initiatives, targeted prevention efforts, and development assistance for health, including financial and research investments for all countries, regardless of their level of sociodemographic development. The presence of countries that substantially outperform others suggests the need for increased scrutiny for proven examples of best practices, which can help to extend gains, whereas the presence of underperforming countries suggests the need for devotion of extra attention to health systems that need more robust support. FUNDING: Bill & Melinda Gates Foundation

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970–2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    BACKGROUND: Detailed assessments of mortality patterns, particularly age-specific mortality, represent a crucial input that enables health systems to target interventions to specific populations. Understanding how all-cause mortality has changed with respect to development status can identify exemplars for best practice. To accomplish this, the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) estimated age-specific and sex-specific all-cause mortality between 1970 and 2016 for 195 countries and territories and at the subnational level for the five countries with a population greater than 200 million in 2016. METHODS: We have evaluated how well civil registration systems captured deaths using a set of demographic methods called death distribution methods for adults and from consideration of survey and census data for children younger than 5 years. We generated an overall assessment of completeness of registration of deaths by dividing registered deaths in each location-year by our estimate of all-age deaths generated from our overall estimation process. For 163 locations, including subnational units in countries with a population greater than 200 million with complete vital registration (VR) systems, our estimates were largely driven by the observed data, with corrections for small fluctuations in numbers and estimation for recent years where there were lags in data reporting (lags were variable by location, generally between 1 year and 6 years). For other locations, we took advantage of different data sources available to measure under-5 mortality rates (U5MR) using complete birth histories, summary birth histories, and incomplete VR with adjustments; we measured adult mortality rate (the probability of death in individuals aged 15-60 years) using adjusted incomplete VR, sibling histories, and household death recall. We used the U5MR and adult mortality rate, together with crude death rate due to HIV in the GBD model life table system, to estimate age-specific and sex-specific death rates for each location-year. Using various international databases, we identified fatal discontinuities, which we defined as increases in the death rate of more than one death per million, resulting from conflict and terrorism, natural disasters, major transport or technological accidents, and a subset of epidemic infectious diseases; these were added to estimates in the relevant years. In 47 countries with an identified peak adult prevalence for HIV/AIDS of more than 0·5% and where VR systems were less than 65% complete, we informed our estimates of age-sex-specific mortality using the Estimation and Projection Package (EPP)-Spectrum model fitted to national HIV/AIDS prevalence surveys and antenatal clinic serosurveillance systems. We estimated stillbirths, early neonatal, late neonatal, and childhood mortality using both survey and VR data in spatiotemporal Gaussian process regression models. We estimated abridged life tables for all location-years using age-specific death rates. We grouped locations into development quintiles based on the Socio-demographic Index (SDI) and analysed mortality trends by quintile. Using spline regression, we estimated the expected mortality rate for each age-sex group as a function of SDI. We identified countries with higher life expectancy than expected by comparing observed life expectancy to anticipated life expectancy on the basis of development status alone. FINDINGS: Completeness in the registration of deaths increased from 28% in 1970 to a peak of 45% in 2013; completeness was lower after 2013 because of lags in reporting. Total deaths in children younger than 5 years decreased from 1970 to 2016, and slower decreases occurred at ages 5-24 years. By contrast, numbers of adult deaths increased in each 5-year age bracket above the age of 25 years. The distribution of annualised rates of change in age-specific mortality rate differed over the period 2000 to 2016 compared with earlier decades: increasing annualised rates of change were less frequent, although rising annualised rates of change still occurred in some locations, particularly for adolescent and younger adult age groups. Rates of stillbirths and under-5 mortality both decreased globally from 1970. Evidence for global convergence of death rates was mixed; although the absolute difference between age-standardised death rates narrowed between countries at the lowest and highest levels of SDI, the ratio of these death rates-a measure of relative inequality-increased slightly. There was a strong shift between 1970 and 2016 toward higher life expectancy, most noticeably at higher levels of SDI. Among countries with populations greater than 1 million in 2016, life expectancy at birth was highest for women in Japan, at 86·9 years (95% UI 86·7-87·2), and for men in Singapore, at 81·3 years (78·8-83·7) in 2016. Male life expectancy was generally lower than female life expectancy between 1970 and 2016, an
    corecore