149 research outputs found

    Sex determination, longevity, and the birth and death of reptilian species

    Get PDF
    Vertebrate sex-determining mechanisms (SDMs) are triggered by the genotype (GSD), by temperature (TSD), or occasionally, by both. The causes and consequences of SDM diversity remain enigmatic. Theory predicts SDM effects on species diversification, and life-span effects on SDM evolutionary turnover. Yet, evidence is conflicting in clades with labile SDMs, such as reptiles. Here, we investigate whether SDM is associated with diversification in turtles and lizards, and whether alterative factors, such as lifespan\u27s effect on transition rates, could explain the relative prevalence of SDMs in turtles and lizards (including and excluding snakes). We assembled a comprehensive dataset of SDM states for squamates and turtles and leveraged large phylogenies for these two groups. We found no evidence that SDMs affect turtle, squamate, or lizard diversification. However, SDM transition rates differ between groups. In lizards TSD-to-GSD surpass GSD-to-TSD transitions, explaining the predominance of GSD lizards in nature. SDM transitions are fewer in turtles and the rates are similar to each other (TSD-to-GSD equals GSD-to-TSD), which, coupled with TSD ancestry, could explain TSD\u27s predominance in turtles. These contrasting patterns can be explained by differences in life history. Namely, our data support the notion that in general, shorter lizard lifespan renders TSD detrimental favoring GSD evolution in squamates, whereas turtle longevity permits TSD retention. Thus, based on the macro-evolutionary evidence we uncovered, we hypothesize that turtles and lizards followed different evolutionary trajectories with respect to SDM, likely mediated by differences in lifespan. Combined, our findings revealed a complex evolutionary interplay between SDMs and life histories that warrants further research that should make use of expanded datasets on unexamined taxa to enable more conclusive analyses

    Different solutions lead to similar life history traits across the great divides of the amniote tree of life

    Get PDF
    Amniote vertebrates share a suite of extra-embryonic membranes that distinguish them from anamniotes. Other than that, however, their reproductive characteristics could not be more different. They differ in basic ectothermic vs endothermic physiology, in that two clades evolved powered flight, and one clade evolved a protective shell. In terms of reproductive strategies, some produce eggs and others give birth to live young, at various degrees of development. Crucially, endotherms provide lengthy parental care, including thermal and food provisioning-whereas ectotherms seldom do. These differences could be expected to manifest themselves in major differences between clades in quantitative reproductive traits. We review the reproductive characteristics, and the distributions of brood sizes, breeding frequencies, offspring sizes and their derivatives (yearly fecundity and biomass production rates) of the four major amniote clades (mammals, birds, turtles and squamates), and several major subclades (birds: Palaeognathae, Galloanserae, Neoaves; mammals: Metatheria and Eutheria). While there are differences between these clades in some of these traits, they generally show similar ranges, distribution shapes and central tendencies across birds, placental mammals and squamates. Marsupials and turtles, however, differ in having smaller offspring, a strategy which subsequently influences other traits

    Global Protected Areas as refuges for amphibians and reptiles under climate change

    Get PDF
    Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species’ distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide

    Ultraconserved elements-based phylogenomic systematics of the snake superfamily Elapoidea, with the description of a new Afro-Asian family

    Get PDF
    The highly diverse snake superfamily Elapoidea is considered to be a classic example of ancient, rapid radiation. Such radiations are challenging to fully resolve phylogenetically, with the highly diverse Elapoidea a case in point. Previous attempts at inferring a phylogeny of elapoids produced highly incongruent estimates of their evolutionary relationships, often with very low statistical support. We sought to resolve this situation by sequencing over 4,500 ultraconserved element loci from multiple representatives of every elapoid family/sub-family level taxon and inferring their phylogenetic relationships with multiple methods. Concatenation and multispecies coalescent based species trees yielded largely congruent and well-supported topologies. Hypotheses of a hard polytomy were not retained for any deep branches. Our phylogenies recovered Cyclocoridae and Elapidae as diverging early within Elapoidea. The Afro-Malagasy radiation of elapoid snakes, classified as multiple subfamilies of an inclusive Lamprophiidae by some earlier authors, was found to be monophyletic in all analyses. The genus Micrelaps was consistently recovered as sister to Lamprophiidae. We establish a new family, Micrelapidae fam. nov., for Micrelaps and assign Brachyophis to this family based on cranial osteological syn-apomorphy. We estimate that Elapoidea originated in the early Eocene and rapidly diversified into all the major lineages during this epoch. Ecological opportunities presented by the post-Cretaceous-Paleogene mass extinction event may have promoted the explosive radiation of elapoid snakes.Peer reviewe

    The geography of snake reproductive mode: a global analysis of the evolution of snake viviparity

    Get PDF
    Aim : Although most reptiles are oviparous, viviparity is a commonmode of reproduction in squamates and has evolved multiple times in different lineages.We test two prevailing hypotheses regarding the biogeography of reptile reproductive modes to evaluate the selective forces driving the evolution of viviparity in snakes. The cold climate hypothesis posits that viviparity is selected for in cold climates, whereas the climatic predictability hypothesis predicts that viviparity is advantageous in seasonal climates. Methods : We collated detailed distribution maps and reproductive mode data for 2663 species of the world’s terrestrial alethinophidian snakes.We studied the relationship between snake reproductive mode and environmental predictors. We applied both an ecological and an evolutionary approach to study snake reproductive mode by performing the analyses at the assemblage level and species level, respectively. We analysed our data at the global and continental scales to learn whether tendencies to viviparity are similar world-wide. Results : We found strong support for the cold climate hypothesis and the assumption that viviparity is an adaptation to cold environments. There was little support for the climatic predictability hypothesis. Nonetheless, viviparous species are not restricted to cold environments. Main conclusions : We conclude that viviparity is adaptive in cold climates, but not necessarily in unpredictable/seasonal climates. Current distributions may not reflect the climate at the time and place of speciation.We suspect many viviparous snakes inhabiting warm climates are members of lineages that originated in colder regions, and their occurrence in maladaptive environments is a result of phylogenetic conservatism

    Global protected areas as refuges for amphibians and reptiles under climate change

    Get PDF
    Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conserva- tion effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species’ distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide

    Skinks of Oceania, New Guinea, and Eastern Wallacea: an underexplored biodiversity hotspot

    Get PDF
    © 2023 The Authors. Published by CSIRO Publishing. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1071/PC22034Context: Skinks comprise the dominant component of the terrestrial vertebrate fauna in Oceania, New Guinea, and Eastern Wallacea (ONGEW). However, knowledge of their diversity is incomplete, and their conservation needs are poorly understood. Aims: To explore the diversity and threat status of the skinks of ONGEW and identify knowledge gaps and conservation needs. Methods: We compiled a list of all skink species occurring in the region and their threat categories designated by the International Union for Conservation of Nature. We used available genetic sequences deposited in the National Center for Biotechnology Information’s GenBank to generate a phylogeny of the region’s skinks. We then assessed their diversity within geographical sub-divisions and compared to other reptile taxa in the region. Key results: Approximately 300 species of skinks occur in ONGEW, making it the second largest global hotspot of skink diversity following Australia. Many phylogenetic relationships remain unresolved, and many species and genera are in need of taxonomic revision. One in five species are threatened with extinction, a higher proportion than almost all reptile families in the region. Conclusions: ONGEW contain a large proportion of global skink diversity on <1% of the Earth’s landmass. Many are endemic and face risks such as habitat loss and invasive predators. Yet, little is known about them, and many species require taxonomic revision and threat level re-assessment. Implications: The skinks of ONGEW are a diverse yet underexplored group of terrestrial vertebrates, with many species likely facing extreme risks in the near future. Further research is needed to understand the threats they face and how to protect themDGC was supported by a grant from the Australian Research Council (FT200100108). Solomon Islands fieldwork by RMB and colleagues was supported by a grant from the US National Science Foundation (DEB-1557053). Research on New Guinea skinks by AS and colleagues, including fieldwork, was supported by Binational Science Foundation grants (2012143 to SM and AA and 002030900 to AS), a Naomi Foundation through the Tel Aviv University GRTF program grant (064181317 to AS), US National Science Foundation grants (DEB-0103794 and DEB-0743890 to FK and AA and DEB-1146033 and DEB-1926783 to CCA), and a National Geographic Explorer’s Grant (NGS-53506R-18) to CCA. RNF and JQR research in the Pacific Islands has been funded by many groups including Mohamed bin Zayed, Conservation International, Island Conservation, Wildlife Conservation Society, IUCN Oceania, SPREP, CEPF, San Diego Zoo Global, University of the South Pacific, and the U.S. Geological Survey.Published versio

    Data gaps and opportunities for comparative and conservation biology

    Get PDF
    Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species
    corecore