57 research outputs found

    Evaluation of Logistics Service Level in Multiple Modes of Transportation

    Get PDF
    The project has been initiated in the aftersales department of an automotive company. Since the company has had recently record years in gaining market share and further efforts are being done to gain a competitive edge over the competitive brand by selling more aftersales parts. Which in turn makes it challenging for logistics to manage the in-creasing inflow and outflow of parts. For the case company, logistics processes form the critical loop involving both the company performance in logistics and customer experience. The company realizes that logistics costs can vastly impact overall business performance. Hence, an opportunity is presented at the case company to expedite regular stock-orders by utilizing available space inside emergency-order trucks instead of using shipping containers. The idea behind this proposed modification is that it will reduce lead time and increase logistics service quality. But the actual problem in this situation is the lack of knowledge to understand company-specific logistics service quality and then the evaluation framework which can help the management to decide whether to proceed or oppose the business idea. Literature was reviewed to define the objectives of service levels and how to measure service quality. Based on the previous literature, a theoretical framework was developed which served as a guiding principle for the latter empirical analysis. The data collection was conducted through semi-structured interviews and information was acquired from a logistics management software. The results from both the quantitative and qualitative analysis uncovered that the case company has substantial profit margins to proceed with the proposed logistics activity leaving enough room for overhead costs. The logistics process does involve multiple challenges, but after performing sensitivity analysis, it was found that the process is flexible enough to handle challenges. Thus, the study provides a positive indication to proceed with this opportunity for a pilot test-run project

    Explainable Malware Detection System Using Transformers-Based Transfer Learning and Multi-Model Visual Representation

    Get PDF
    Android has become the leading mobile ecosystem because of its accessibility and adaptability. It has also become the primary target of widespread malicious apps. This situation needs the immediate implementation of an effective malware detection system. In this study, an explainable malware detection system was proposed using transfer learning and malware visual features. For effective malware detection, our technique leverages both textual and visual features. First, a pre-trained model called the Bidirectional Encoder Representations from Transformers (BERT) model was designed to extract the trained textual features. Second, the malware-to-image conversion algorithm was proposed to transform the network byte streams into a visual representation. In addition, the FAST (Features from Accelerated Segment Test) extractor and BRIEF (Binary Robust Independent Elementary Features) descriptor were used to efficiently extract and mark important features. Third, the trained and texture features were combined and balanced using the Synthetic Minority Over-Sampling (SMOTE) method; then, the CNN network was used to mine the deep features. The balanced features were then input into the ensemble model for efficient malware classification and detection. The proposed method was analyzed extensively using two public datasets, CICMalDroid 2020 and CIC-InvesAndMal2019. To explain and validate the proposed methodology, an interpretable artificial intelligence (AI) experiment was conducted

    Intellectual Capital and Financial Performance : Does Board Size and Independent Directors Matter? An Empirical Enquiry

    Get PDF
    Purpose: Intellectual capital (IC) is a paramount resource for competitiveness in the knowledge-based financial sectors of the economy. As financial technology advances, specifically in the banking industry, it is vital to understand the effect of IC on financial performance. This study aims to investigate the effect of IC on return on equity (ROE), with a unique emphasis on the moderating role of board attributes. Previous studies have overlooked this moderating role. Design/methodology/approach: The study sample consists of 17 banks and a panel data set spanning 2016–2021, extracted from annual reports. Antel Pulic’s value-added intellectual coefficient (VAIC) model is used to compute IC. To analyze the data, a generalized least squares analysis is conducted. The robustness of the analysis is ensured by using the two-stage least squares (2SLS) econometric technique. Findings: The findings indicate that both the VAIC and human capital efficiency (HCE) have a significant impact on the ROE of banks. In terms of moderation, it is observed that board size (BS) exerts a negative effect on the association between VAIC, HCE, structural capital efficiency and ROE. Additionally, BS positively compounds the connection between capital employed efficiency and ROE. Similarly, the presence of independent directors (IND) significantly moderates the effects of VAIC and its components on the ROE of banks in Pakistan. Practical implications: Banks should focus on the HCE for a higher ROE. Moreover, banks ought to prioritize appointing more independent directors in the boardroom for effective utilization of IC and greater ROE. Originality/value: The findings of the study, which analyzed data from Pakistan’s banking sector, are original and provide additional insights into the literature on IC and board attributes

    Exploring the Effect of Enterprise Risk Management for ESG Risks Towards Green Growth

    Get PDF
    Purpose Despite the growing emphasis on sustainability and the need to manage environmental, social, and governance (ESG) risks, the direct relationship between enterprise risk management (ERM) and green growth (GG) has not been investigated. This study seeks to fill this gap by examining the effect of ERM on the GG of oil and gas (O&G) companies in Malaysia. Design/methodology/approach The study used panel data regression models to analyze panel data from 2012 to 2021. For computing GG, we adapted the Organization for Economic Cooperation and Development’s (OECD) GG framework. ERM is computed using COSO and WBCSD guidelines for ESG-related risks. Weighted content analysis is used to measure ERM and GG Findings The findings derived from the content and descriptive statistics analyses indicate a consistent and ongoing rise in the adoption of ERM practices over time. However, some companies are still in the initial stages of incorporating ERM to address ESG risks. The study’s findings unequivocally establish a substantial and positive relationship between ERM and GG. ERM drives GG by significantly influencing its environmental and resource productivity dimensions. The study further reveals that the impact of ERM on economic opportunities and policy responses, as well as the natural asset base, is statistically significant, albeit with relatively lower coefficient values. Practical implications To enhance the legitimacy of organizations and foster positive stakeholder relationships, regulators, governments, and policymakers should actively promote the adoption of ERM standards that specifically address ESG risks, as outlined by COSO and WBCSD. This strategic alignment with risk management practices will ultimately contribute to improving green growth for organizations. Originality/value To the best of the authors' knowledge, this is the first study examining ERM’s effect on GG. The study adds to the existing literature by focusing on ERM’s role in a company’s GG. It clarifies ERM’s significant effect on diminishing emerging ESG risks and advancing G

    High prevalence of cardiometabolic risk factors amongst young adults in the United Arab Emirates: the UAE Healthy Future Study

    Get PDF
    BackgroundCardiovascular disease (CVD) is the leading cause of death in the world. In the United Arab Emirates (UAE), it accounts for 40% of mortality. CVD is caused by multiple cardiometabolic risk factors (CRFs) including obesity, dysglycemia, dyslipidemia, hypertension and central obesity. However, there are limited studies focusing on the CVD risk burden among young Emirati adults. This study investigates the burden of CRFs in a sample of young Emiratis, and estimates the distribution in relation to sociodemographic and behavioral determinants.MethodsData was used from the baseline data of the UAE Healthy Future Study volunteers. The study participants were aged 18 to 40 years. The study analysis was based on self-reported questionnaires, anthropometric and blood pressure measurements, as well as blood analysis.ResultsA total of 5167 participants were included in the analysis; 62% were males and the mean age of the sample was 25.7 years. The age-adjusted prevalence was 26.5% for obesity, 11.7% for dysglycemia, 62.7% for dyslipidemia, 22.4% for hypertension and 22.5% for central obesity. The CRFs were distributed differently when compared within social and behavioral groups. For example, obesity, dyslipidemia and central obesity in men were found higher among smokers than non-smokers (p \u3c 0.05). And among women with lower education, all CRFs were reported significantly higher than those with higher education, except for hypertension. Most CRFs were significantly higher among men and women with positive family history of common non-communicable diseases.ConclusionsCRFs are highly prevalent in the young Emirati adults of the UAE Healthy Future Study. The difference in CRF distribution among social and behavioral groups can be taken into account to target group-specific prevention measures

    The interrelationship and accumulation of cardiometabolic risk factors amongst young adults in the United Arab Emirates: The UAE Healthy Future Study.

    Get PDF
    INTRODUCTION: Similar to other non-communicable diseases (NCDs), people who develop cardiovascular disease (CVD) typically have more than one risk factor. The clustering of cardiovascular risk factors begins in youth, early adulthood, and middle age. The presence of multiple risk factors simultaneously has been shown to increase the risk for atherosclerosis development in young and middle-aged adults and risk of CVD in middle age. OBJECTIVE: This study aimed to address the interrelationship of CVD risk factors and their accumulation in a large sample of young adults in the United Arab Emirates (UAE). METHODS: Baseline data was drawn from the UAE Healthy Future Study (UAEHFS), a volunteer-based multicenter study that recruits Emirati nationals. Data of participants aged 18 to 40 years was used for cross-sectional analysis. Demographic and health information was collected through self-reported questionnaires. Anthropometric data and blood pressure were measured, and blood samples were collected. RESULTS: A total of 5126 participants were included in the analysis. Comorbidity analyses showed that dyslipidemia and obesity co-existed with other cardiometabolic risk factors (CRFs) more than 70% and 50% of the time, respectively. Multivariate logistic regression analysis of the risk factors with age and gender showed that all risk factors were highly associated with each other. The strongest relationship was found with obesity; it was associated with four-fold increase in the odds of having central obesity [adjusted OR 4.70 (95% CI (4.04-5.46)], and almost three-fold increase odds of having abnormal glycemic status [AOR 2.98 (95% (CI 2.49-3.55))], hypertension (AOR 3.03 (95% CI (2.61-3.52))] and dyslipidemia [AOR 2.71 (95% CI (2.32-3.15)]. Forty percent of the population accumulated more than 2 risk factors, and the burden increased with age. CONCLUSION: In this young population, cardiometabolic risk factors are highly prevalent and are associated with each other, therefore creating a heavy burden of risk factors. This forecasts an increase in the burden of CVD in the UAE. The robust longitudinal design of the UAEHFS will enable researchers to understand how risk factors cluster before disease develops. This knowledge will offer a novel approach to design group-specific preventive measures for CVD development

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
    corecore