452 research outputs found

    Observations of the Hubble Deep Field South with the Infrared Space Observatory - II. Associations and star formation rates

    Get PDF
    We present results from a deep mid-IR survey of the Hubble Deep Field South (HDF-S) region performed at 7 and 15um with the CAM instrument on board ISO. We found reliable optical/near-IR associations for 32 of the 35 sources detected in this field by Oliver et al. (2002, Paper I): eight of them were identified as stars, one is definitely an AGN, a second seems likely to be an AGN, too, while the remaining 22 appear to be normal spiral or starburst galaxies. Using model spectral energy distributions (SEDs) of similar galaxies, we compare methods for estimating the star formation rates (SFRs) in these objects, finding that an estimator based on integrated (3-1000um) IR luminosity reproduces the model SFRs best. Applying this estimator to model fits to the SEDs of our 22 spiral and starburst galaxies, we find that they are forming stars at rates of ~1-100 M_sol/yr, with a median value of ~40M_sol/yr, assuming an Einstein - de Sitter universe with a Hubble constant of 50 km/s/Mpc, and star formation taking place according to a Salpeter (1955) IMF across the mass range 0.1-100M_sol. We split the redshift range 0.0<z<0.6 into two equal-volume bins to compute raw estimates of the star formation rate density contributed by these sources, assuming the same cosmology and IMF as above and computing errors based on estimated uncertainties in the SFRs of individual galaxies. We compare these results with other estimates of the SFR density made with the same assumptions, showing them to be consistent with the results of Flores et al. (1999) from their ISO survey of the CFRS 1415+52 field. However, the relatively small volume of our survey means that our SFR density estimates suffer from a large sampling variance, implying that our results, by themselves, do not place tight constraints on the global mean SFR density.Comment: Accepted for MNRAS. 23 pages, 10 figures (Figs. 4&6 included here as low resolution JPEGS), latex, uses mn,epsfig. Further information and full resolution versions of Figs 4&6 available at http://astro.ic.ac.uk/hdfs (v2: full author list added

    Near and mid-infrared colours of star-forming galaxies in ELAIS fields

    Get PDF
    We present J and K-band near-infrared photometry of a sample of mid-infrared sources detected by the Infrared Space Observatory (ISO) as part of the European Large Area ISO-Survey (ELAIS) and study their classification and star-forming properties. We have used the Preliminary ELAIS Catalogue for the 6.7 micron (LW2) and 15 micron (LW3) fluxes. All of the high-reliability LW2 sources and 80 per cent of the LW3 sources are identified in the near-IR survey reaching K = 17.5 mag. The near- to mid-IR flux ratios can effectively be used to separate stars from galaxies in mid-IR surveys. The stars detected in our survey region are used to derive a new accurate calibration for the ELAIS ISOCAM data in both the LW2 and LW3 filters. We show that near to mid-IR colour-colour diagrams can be used to further classify galaxies, as well as study star-formation. The ISOCAM ELAIS survey is found to mostly detect strongly star-forming late-type galaxies, possibly starburst powered galaxies, and it also picks out obscured AGN. The ELAIS galaxies yield an average mid-IR flux ratio LW2/LW3 = 0.67 +/- 0.27. We discuss this [6.7/15] ratio as a star formation tracer using ISO and IRAS data of a local comparison sample. We find that the [K/15] ratio is also agood indicator of activity level in galaxies and conclude that the drop in the [6.7/15] ratio seen in strongly star-forming galaxies is a result of both an increase of 15 mic emission and an apparent depletion of 6.7 mic emission. Near-IR data together with the mid-IR give the possibility to estimate the relative amount of interstellar matter in the galaxies.Comment: 18 pages, 15 figures; accepted for publication in MNRA

    Far-infrared spectroscopy of a lensed starburst: a blind redshift from Herschel

    Get PDF
    We report the redshift of HATLAS J132427.0+284452 (hereafter HATLAS J132427), a gravitationally lensed starburst galaxy, the first determined 'blind' by the Herschel Space Observatory. This is achieved via the detection of [C II] consistent with z = 1.68 in a far-infrared spectrum taken with the SPIRE Fourier Transform Spectrometer. We demonstrate that the [C II] redshift is secure via detections of CO J = 2 - 1 and 3 - 2 using the Combined Array for Research in Millimeter-wave Astronomy and the Institut de Radioastronomie Millimetrique's Plateau de Bure Interferometer. The intrinsic properties appear typical of high-redshift starbursts despite the high lensing-amplified fluxes, proving the ability of the FTS to probe this population with the aid of lensing. The blind detection of [C II] demonstrates the potential of the SAFARI imaging spectrometer, proposed for the much more sensitive SPICA mission, to determine redshifts of multiple dusty galaxies simultaneously without the benefit of lensing.Comment: 6 pages, 5 figures, accepted for publication in MNRAS as a Lette

    Observations of the Hubble Deep Field with the Infrared Space Observatory. I. Data reduction, maps and sky coverage

    Get PDF
    We present deep imaging at 6.7 micron and 15 micron from the CAM instrument on the Infrared Space Observatory (ISO), centred on the Hubble Deep Field (HDF). These are the deepest integrations published to date at these wavelengths in any region of sky. We discuss the observation strategy and the data reduction. The observed source density appears to approach the CAM confusion limit at 15 micron, and fluctuations in the 6.7 micron sky background may be identifiable with similar spatial fluctuations in the HDF galaxy counts. ISO appears to be detecting comparable field galaxy populations to the HDF, and our data yields strong evidence that future IR missions (such as SIRTF, FIRST and WIRE) as well as SCUBA and millimetre arrays will easily detect field galaxies out to comparably high redshifts.Comment: 7 pages, LaTeX (using mn.sty), 9 figures included as GIFs. Gzipped Postscipt version available from http://artemis.ph.ic.ac.uk/hdf/papers/ps/. Further information on ISO-HDF project can be found at http://artemis.ph.ic.ac.uk/hdf

    Observations of the Hubble Deep Field with the Infrared Space Observatory V. Spectral energy distributions starburst models and star formation history

    Get PDF
    We have modelled the spectral energy distributions of the 13 Hubble Deep Field (HDF) galaxies reliably detected by the Infrared Space Observatoiy (ISO). For two galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining 11 galaxies there is a clear mid-infrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how the star formation rate can be deduced from the far-infrared luminosity, and derive star formation rates for these galaxies of 8-1000ø M¿ yr-1, where ø takes account of the uncertainty in the initial mass function. The HDF galaxies detected by ISO are clearly forming stars at a prodigious rate compared with nearby normal galaxies. We discuss the implications of our detections for the history of star and heavy element formation in the Universe. Although uncertainties in the calibration, reliability of source detection, associations and starburst models remain, it is clear that dust plays an important role in star formation out to redshift 1 at least

    The very bright SCUBA galaxy count: looking for SCUBA galaxies with the Mexican Hat Wavelet

    Full text link
    We present the results of a search for bright high-redshift galaxies in two large SCUBA scan-maps of Galactic regions. A Mexican Hat Wavelet technique was used to locate point sources in these maps, which suffer high foreground contamination as well as typical scan-map noise signatures. A catalogue of point source objects was selected and observed again in the submillimetre continuum, and in HCO+ (3->2) at zero redshift to rule out Galactic sources. No extragalactic sources were found. Simulations show that the survey was sensitive to sources with fluxes > 50 mJy, depending on the local background. These simulations result in upper limits on the 850-micron counts of SCUBA galaxies of 53 per square degree at 50 mJy and 2.9 per square degree at 100 mJy.Comment: Accepted by MNRA

    Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryWe present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 μm-selected sample we detect no significant clustering, consistent with the expectation that the 250 μm-selected sources are mostly normal galaxies at z 1. For our 350 μm and 500 μm-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z~2–3 we detect significant strong clustering, leading to an estimate of r0 ~ 7–11 h-1 Mpc. The slope of our clustering measurements is very steep, δ ~ 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.Peer reviewe

    PEP: first Herschel probe of dusty galaxy evolution up to z~3

    Full text link
    We exploit the deepest existing far-infrared (FIR) data obtained so far by Herschel at 100 and 160 um in the GOODS-N, as part of the PACS Evolutionary Probe (PEP) survey, to derive for the first time the evolution of the rest-frame 60-um, 90-um, and total IR luminosity functions (LFs) of galaxies and AGNs from z=0 to unprecedented high redshifts (z~2-3). The PEP LFs were computed using the 1/Vmax method. The FIR sources were classified by means of a detailed broad- band SED-fitting analysis and spectral characterisation. Based on the best-fit model results, k-correction and total IR (8-1000 um) luminosity were obtained for each source. LFs (monochromatic and total) were then derived for various IR populations separately in different redshift bins and compared to backward evolution model predictions. We detect strong evolution in the LF to at least z~2. Objects with SEDs similar to local spiral galaxies are the major contributors to the star formation density (SFD) at z< 0.3, then, as redshift increases, moderate SF galaxies - most likely containing a low-luminosity AGN - start dominating up to z ~= 1.5. At >1.5 the SFD is dominated by the contributions of starburst galaxies. In agreement with previous findings, the comoving IR LD derived from our data evolves approximately as (1 + z)^(3.8+/-0.3) up to z~1, there being some evidence of flattening up to z~2.Comment: Accepted for publication in the A&A Herschel first results Special Issu

    A search for debris disks in the Herschel-ATLAS

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)Aims. We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods. We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results. We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme.Peer reviewe

    The Far-Infrared Properties of Spatially Resolved AKARI Observations

    Full text link
    We present the spatially resolved observations of IRAS sources from the Japanese infrared astronomy satellite AKARI All-Sky Survey during the performance verification (PV) phase of the mission. We extracted reliable point sources matched with IRAS point source catalogue. By comparing IRAS and AKARI fluxes, we found that the flux measurements of some IRAS sources could have been over or underestimated and affected by the local background rather than the global background. We also found possible candidates for new AKARI sources and confirmed that AKARI observations resolved IRAS sources into multiple sources. All-Sky Survey observations are expected to verify the accuracies of IRAS flux measurements and to find new extragalactic point sources.Comment: 11 pages, 7 figures, accepted publication in PASJ AKARI special issu
    corecore