11 research outputs found

    Vascular plants as surrogates of butterfly and grasshopper diversity on two Swiss subalpine summer pastures

    Get PDF
    Summer pastures in the Swiss Alps are currently affected by land-use changes that cause a decrease in biodiversity. Although these habitats make up one-third of the whole Swiss agricultural area, direct payments dedicated to support their management are very low. Current political instruments do not support efforts to conserve the biodiversity in these areas, but a vegetation-based approach such as the one implemented in the permanently utilized agricultural areas is under discussion. However, available studies evaluating the surrogate value of vascular plants for other (particularly animal) taxa have yielded inconsistent results, and very few have been conducted in habitats at high elevations. We investigated the extent to which vascular plants are adequate surrogates for butterfly and grasshopper diversity, examining the congruence of species richness and community similarity in two heterogeneous subalpine pastures in the Swiss Alps. Results at the species richness level (Spearman's rank correlation) varied widely according to the study site and taxa assessed. In contrast, at the community similarity level (Procrustean randomization tests with Bray-Curtis similarity), congruencies between vascular plant and invertebrate taxa were generally highly significant. We therefore recommend the use of community similarity as a basis for estimating biodiversity patterns. Our results suggest that conservation measures aimed primarily at enhancing the floristic diversity of subalpine grasslands are also likely to benefit butterfly and grasshopper diversity, at least at the local scal

    The Historic Square Foot Dataset : outstanding small‐scale richness in Swiss grasslands around the year 1900

    Get PDF
    Grasslands host a significant share of Europe's species diversity but are among the most threatened vegetation types of the continent. Resurvey studies can help to understand patterns and drivers of changes in grassland diversity and species composition. However, most resurveys are based on local or regional data, and hardly reach back more than eight decades. Here, we publish and describe the Historic Square Foot Dataset, comprising 580 0.09-m2 and 43 1-m2 vegetation plots carefully sampled between 1884 and 1931, covering a wide range of grassland types across Switzerland. We provide the plots as an open-access data set with coordinates, relocation accuracy and fractional aboveground biomass per vascular plant species. We assigned EUNIS habitat types to most plots. Mean vascular plant species richness in 0.09 m2 was 19.7, with a maximum of 47. This is considerably more than the present-day world record of 43 species for this plot size. Historically, species richness did not vary with elevation, differing from the unimodal relationship found today. The data set provides unique insight into how grasslands in Central Europe looked more than 100 years ago, thus offering manifold options for studies on the development of grassland biodiversity and productivity

    The prioritisation of a short list of alien plants for risk analysis within the framework of the Regulation (EU) No. 1143/2014

    Get PDF
    Thirty-seven alien plant species, pre-identified by horizon scanning exercises were prioritised for pest risk analysis (PRA) using a modified version of the EPPO Prioritisation Process designed to be compliant with the EU Regulation 1143/2014. In Stage 1, species were categorised into one of four lists – a Residual List, EU List of Minor Concern, EU Observation List and the EU List of Invasive Alien Plants. Only those species included in the latter proceeded to the risk management stage where their priority for PRA was assessed. Due to medium or high spread potential coupled with high impacts twenty-two species were included in the EU List of Invasive Alien Plants and proceeded to Stage 2. Four species (Ambrosia trifida, Egeria densa, Fallopia baldschuanica and Oxalis pes-caprae) were assigned to the EU Observation List due to moderate or low impacts. Albizia lebbeck, Clematis terniflora, Euonymus japonicus, Lonicera morrowii, Prunus campanulata and Rubus rosifolius were assigned to the residual list due to a current lack of information on impacts. Similarly, Cornus sericea and Hydrilla verticillata were assigned to the Residual List due to unclear taxonomy and uncertainty in native status, respectively. Chromolaena odorata, Cryptostegia grandiflora and Sphagneticola trilobata were assigned to the Residual List as it is unlikely they will establish in the Union under current climatic conditions. In the risk management stage, Euonymus fortunei, Ligustrum sinense and Lonicera maackii were considered a low priority for PRA as they do not exhibit invasive tendencies despite being widely cultivated in the EU over several decades. Nineteen species were identified as having a high priority for a PRA (Acacia dealbata, Ambrosia confertiflora, Andropogon virginicus, Cardiospermum grandiflorum, Celastrus orbiculatus, Cinnamomum camphora, Cortaderia jubata, Ehrharta calycina, Gymnocoronis spilanthoides, Hakea sericea, Humulus scandens, Hygrophila polysperma, Lespedeza cuneata, Lygodium japonicum, Pennisetum setaceum, Prosopis juliflora, Sapium sebiferum, Pistia stratiotes and Salvinia molesta)

    AgriWeedClim database: A repository of vegetation plot data from Central European arable habitats over 100 years

    Get PDF
    Aims: Arable habitats (i.e. fields, orchards, vineyards, and their fallows) were cre- ated by humans and have been essential elements in Central European landscapes for several millennia. In recent decades, these habitats have been drastically altered by changes in land use as well as agricultural practices and, more recently, by climate change. These changes have precipitated substantial changes in vegetation and their spatial and temporal trajectories have not yet been exhaustively studied. Here, we present the AgriWeedClim database —­ a new resource of vegetation plot (relevé) data of arable habitats in Central Europe. Location: Germany, Czech Republic, Slovakia, Switzerland, Liechtenstein, Austria, Hungary, Northern Italy, Slovenia, Croatia. Methods: Vegetation plot data were obtained from large repositories (e.g. European Vegetation Archive), specialized regional databases, colleagues and the literature. Data were then checked for completeness and standardized (e.g. taxonomy, nomenclature, crop types). Species were assigned native, archaeophyte (i.e. alien species introduced before c. 1492 CE) or neophyte (i.e. alien species introduced after c. 1492 CE) status. Results: The AgriWeedClim database version 1.0 contains georeferenced data from 32,889 vegetation plots sampled from 1916 to 2019. Conclusions: We provide an overview of this new resource and present example analyses to show its content and possible applications. We outline potential research questions including analysis of patterns and causes of vegetation changes in arable habitats from the early 20th century to the present

    Evaluation der Ökomassnahmen: Bereich Biodiversität

    Get PDF
    1993 führte der Bund ökologische Direktzahlungen ein; seit 1999 ist die Erbringung des ökologischen Leistungsnachweises (ÖLN) durch die Landwirtschaftsbetriebe die Voraussetzung zum Bezug von Direktzahlungen. Heute werden 97 % der landwirtschaftlichen Nutzfläche nach den Regeln des ÖLN bewirtschaftet. Die wichtigste Massnahme des ÖLN, welche einen Einfluss auf die Biodiversität hat, ist, dass die Betriebe 7 % ihrer landwirtschaftlichen Nutzfläche (LN) als ökologische Ausgleichsflächen (öAF) auszuweisen haben (bei Spezialkulturen 3,5 %). Weitere Anforderungen des ÖLN (ausgeglichene Nährstoffbilanz, geregelte Fruchtfolge, Bodenschutz, gezielter Einsatz von Pflanzenschutzmitteln, tiergerechte Haltung der Nutztiere) können ebenfalls einen Einfluss haben, stehen jedoch weniger im Vordergrund

    Farmland biodiversity and agricultural management on 237 farms in 13 European and two African regions

    Get PDF
    Farmland is a major land cover type in Europe and Africa and provides habitat for numerous species. The severe decline in farmland biodiversity of the last decades has been attributed to changes in farming practices, and organic and low-input farming are assumed to mitigate detrimental effects of agricultural intensification on biodiversity. Since the farm enterprise is the primary unit of agricultural decision making, management-related effects at the field scale need to be assessed at the farm level. Therefore, in this study, data were collected on habitat characteristics, vascular plant, earthworm, spider, and bee communities and on the corresponding agricultural management in 237 farms in 13 European and two African regions. In 15 environmental and agricultural homogeneous regions, 6–20 farms with the same farm type (e.g., arable crops, grassland, or specific permanent crops) were selected. If available, an equal number of organic and non-organic farms were randomly selected. Alternatively, farms were sampled along a gradient of management intensity. For all selected farms, the entire farmed area was mapped, which resulted in total in the mapping of 11 338 units attributed to 194 standardized habitat types, provided together with additional descriptors. On each farm, one site per available habitat type was randomly selected for species diversity investigations. Species were sampled on 2115 sites and identified to the species level by expert taxonomists. Species lists and abundance estimates are provided for each site and sampling date (one date for plants and earthworms, three dates for spiders and bees). In addition, farmers provided information about their management practices in face-to-face interviews following a standardized questionnaire. Farm management indicators for each farm are available (e.g., nitrogen input, pesticide applications, or energy input). Analyses revealed a positive effect of unproductive areas and a negative effect of intensive management on biodiversity. Communities of the four taxonomic groups strongly differed in their response to habitat characteristics, agricultural management, and regional circumstances. The data has potential for further insights into interactions of farmland biodiversity and agricultural management at site, farm, and regional scale

    <scp>ReSurveyEurope</scp>: A database of resurveyed vegetation plots in Europe

    Get PDF
    AbstractAimsWe introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.ResultsReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun‐Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.ConclusionsReSurveyEurope is a new resource to address a wide range of research questions on fine‐scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well‐established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.</jats:sec

    Butterfly diversity in Swiss grasslands: respective impacts of low-input management, landscape features and region

    No full text
    In order to enhance agro-biodiversity, Swiss farmers have to convert 7% of the arable land into low-input habitats, namely ecological compensation areas (ECA). This agri-environmental programme is of high scientific interest as it permits to assess and quantify the effects of farming practices at the local and landscape scales. This study aimed at testing the effects of low-input management of grassland on butterfly diversity at the local and the landscape scale in three Swiss farming regions. Low input grasslands did not have a higher butterfly diversity than intensive grasslands, despite a higher species richness in one year. However, butterfly assemblages varied according to the landscape pattern, namely the amount of low-input habitats, intensive grasslands, crops and forest in the surrounding landscape, and to the regional localisation. Regional differences can be explained by the type and intensity of agricultural production and by landscape features at the regional scale. Recommendations for the further development and regionalization of the Swiss ECA scheme are derived

    Effect of low-input habitats on biodiversity in Swiss agricultural landscapes

    No full text
    Since 1993 Swiss farmers increasingly convert land to low-input habitats, these ecological compensation areas (ECA) making up today 10% of the Utilised Agricultural Area. To assess whether ECA introduction allows enhancing agro-biodiversity, biodiversity indicators are monitored in the Swiss Plateau. ECA had higher diversity of plant, bird, and arthropod species. However, in some ECA meadows and traditional orchards, the composition of the vegetation still reflected their former intensive management. It is concluded that faunistic indicators react more rapidly to the introduction of ECA than the vegetation
    corecore