17 research outputs found

    Understanding Stakeholder Synergies Through System Dynamics: Integrating Multi-Sectoral Stakeholder Narratives Into Quantitative Environmental Models

    Get PDF
    To reach the global aspiration of 17 ambitious SDGs, local realities must be integrated. Often, models are developed based on quantitative statistical data sources from databases on environmental indicators or economics to assess how a given SDG can be achieved. This process however removes the local realities from the equation. How can you best include stakeholders in this mathematical modelling processes distanced from their local realities, though, and ensure higher probability of future compliance with top-down global decisions that may have local consequences once implemented? When researching stakeholder involvement and their ability to form public policy, their opinions often get reported as a single assessment, like counting the fish in the ocean once and stating that as a permanent result. Too seldom do stakeholders get invited back and given the opportunity to validate results and allow researchers to adjust their models based on on-the-ground validation or change requests. We tested the full integration of stakeholders in the modelling process of environmental topics in six different case areas across Europe, with each area holding six sectoral and one inter-sectoral workshops. In these workshops, the scope of the issues relevant to the stakeholders was driven by first the sectoral priorities of the given sector, followed by a merging of issues. In this process, we were able to identify what the commonalities between different sectors were and where synergies lay in terms of governance paths. These results were then returned to the stakeholders in a mixed session where they were able to come with feedback and advice on the results researchers presented, so that the models reflected more closely the perceptions of the regional actors. We present these methods and reflect on the challenges and opportunities of using this deep-integration method to integrate qualitative data from stakeholder inclusion in a quantitative modelThe authors would like to acknowledge funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement N° 773782Peer reviewe

    Understanding Stakeholder Synergies Through System Dynamics: Integrating Multi-Sectoral Stakeholder Narratives Into Quantitative Environmental Models

    Get PDF
    To reach the global aspiration of 17 ambitious SDGs, local realities must be integrated. Often, models are developed based on quantitative statistical data sources from databases on environmental indicators or economics to assess how a given SDG can be achieved. This process however removes the local realities from the equation. How can you best include stakeholders in this mathematical modelling processes distanced from their local realities, though, and ensure higher probability of future compliance with top-down global decisions that may have local consequences once implemented? When researching stakeholder involvement and their ability to form public policy, their opinions often get reported as a single assessment, like counting the fish in the ocean once and stating that as a permanent result. Too seldom do stakeholders get invited back and given the opportunity to validate results and allow researchers to adjust their models based on on-the-ground validation or change requests. We tested the full integration of stakeholders in the modelling process of environmental topics in six different case areas across Europe, with each area holding six sectoral and one inter-sectoral workshops. In these workshops, the scope of the issues relevant to the stakeholders was driven by first the sectoral priorities of the given sector, followed by a merging of issues. In this process, we were able to identify what the commonalities between different sectors were and where synergies lay in terms of governance paths. These results were then returned to the stakeholders in a mixed session where they were able to come with feedback and advice on the results researchers presented, so that the models reflected more closely the perceptions of the regional actors. We present these methods and reflect on the challenges and opportunities of using this deep-integration method to integrate qualitative data from stakeholder inclusion in a quantitative modelThe authors would like to acknowledge funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement N° 773782Peer reviewe

    Data for wetlandscapes and their changes around the world

    Get PDF
    Geography and associated hydrological, hydroclimate and land-use conditions and their changes determine the states and dynamics of wetlands and their ecosystem services. The influences of these controls are not limited to just the local scale of each individual wetland but extend over larger landscape areas that integrate multiple wetlands and their total hydrological catchment – the wetlandscape. However, the data and knowledge of conditions and changes over entire wetlandscapes are still scarce, limiting the capacity to accurately understand and manage critical wetland ecosystems and their services under global change. We present a new Wetlandscape Change Information Database (WetCID), consisting of geographic, hydrological, hydroclimate and land-use information and data for 27 wetlandscapes around the world. This combines survey-based local information with geographic shapefiles and gridded datasets of large-scale hydroclimate and land-use conditions and their changes over whole wetlandscapes. Temporally, WetCID contains 30-year time series of data for mean monthly precipitation and temperature and annual land-use conditions. The survey-based site information includes local knowledge on the wetlands, hydrology, hydroclimate and land uses within each wetlandscape and on the availability and accessibility of associated local data. This novel database (available through PANGAEA https://doi.org/10.1594/PANGAEA.907398; Ghajarnia et al., 2019) can support site assessments; cross-regional comparisons; and scenario analyses of the roles and impacts of land use, hydroclimatic and wetland conditions, and changes in whole-wetlandscape functions and ecosystem services

    Current Wildland Fire Patterns and Challenges in Europe : A Synthesis of National Perspectives

    Get PDF
    Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009-2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action "Fire and the Earth System: Science & Society" funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.Peer reviewe

    The Potential of Wetlands in Achieving the Sustainable Development Goals of the 2030 Agenda

    No full text
    Wetlands used as cost-effective nature-based solutions provide environmental and socio-economic benefits to people locally and regionally. With significant loss of wetland areas due to expansion of forest, agriculture, and energy production industries, some countries, including Sweden, have begun providing economic support for environmental objectives for wetland conservation and restoration. Targeting such objectives and setting up relevant plans can decrease the risk of losing valuable wetland-related benefits and help achieve the United Nations Sustainable Development Goals (SDGs). Different ranges of wetland ecosystem services are broadly addressed by the SDGs, however, target-based assessments are required to better understand wetland functionality for sustainable development. This study investigates whether and how wetland ecosystems at local and regional scales can contribute to achieving the SDGs and their targets in Sweden. Scientific literature, policy documents, and international reports on Swedish wetland ecosystems are scrutinized to exemplify the SDGs and their targets, applying a scoring framework based on their interactions. This reveals that, overall, Swedish wetland ecosystems and implemented management plans can positively interact with 10 SDGs and 17 targets at different levels. The analysis also highlights synergies that need to be considered for integrated environmental governance and enhanced policy coherence for Swedish wetland management

    Change Drivers and Impacts in Arctic Wetland Landscapes—Literature Review and Gap Analysis

    No full text
    Wetlands are essential parts of Arctic landscapes, playing important roles for the sustainable development of the region, and linking to climate change and adaptation, ecosystem services, and the livelihood of local people. The effects of human and natural change drivers on key landscape characteristics of Arctic wetlands may be critical for ecosystem resilience, with some functional aspects still poorly understood. This paper reviews the scientific literature on change drivers for Arctic wetland landscapes, seeking to identify the main studied interactions among different drivers and landscape characteristics and their changes, as well as emerging research gaps in this context. In a total of 2232 studies of various aspects of Arctic wetland landscapes found in the literature, natural drivers and climate change have been the most studied change drivers so far, particularly regarding their impacts on carbon cycling, plant communities and biodiversity. In contrast, management plans, land use changes, and nutrient-pollutant loading, have not been investigated as much as human drivers of Arctic wetland change. This lack of study highlights essential gaps in wetland related research, and between such research and management of Arctic wetlands

    Flood Mitigation in Mediterranean Coastal Regions: Problems, Solutions, and Stakeholder Involvement

    No full text
    Flooding affects Mediterranean coastal areas, with negative impacts on regional populations and ecosystems. This paper reviews the causes and consequences of coastal flooding in European Mediterranean countries, common and advanced solutions implemented to mitigate flood risk, and the importance of stakeholder involvement in developing these solutions. Climate change, intensive urbanization, tourism, deforestation, wildfires, and erosion are the main causes of coastal flooding, leading to social and economic losses, degradation of ecosystems, and water and soil contamination due to saltwater intrusion. Various measures for mitigating urban coastal flooding have been implemented, including coastal barriers, infrastructural drainage systems, wetlands, and mobile dams. Development and implementation of such solutions should be performed in close collaboration with stakeholders, but their current engagement at the coordination and/or decision-making level does not allow full integration of local knowledge in flood mitigation projects. Various processes are used to engage stakeholders in coastal flood mitigation, but participatory approaches are required to integrate their perspectives into performance analysis of potential solutions. Such approaches would allow a balance to be reached between nature conservation, market forces, stakeholder needs, and decision-makers’ priorities, resulting in development of innovative and sustainable mitigation solutions to enhance urban resilience to coastal flooding

    Contribution of physical and anthropogenic factors to gully erosion initiation

    No full text
    Losses of large volumes of soil through gully formation lead to serious environmental, societal, and economic problems for human societies. This study establishes a framework based on an artificial intelligence approach to investigate the impact of geo-environmental and topo-hydrological factors on gully occurrences in the Biram region, Iran. The maximum entropy, random forest, and boosted regression trees machine-learning models were applied. The relative importance of variables (RIV) was then determined and gully erosion susceptibility maps were generated. Model results were evaluated using cutoff–dependent and –independent metrics. All models identified road construction as the main cause of gully formation in the study region (RVI ranged between 27% and 34%), and a medium contribution of distance from stream (RVI = 15–18%), lithology (RVI = 12–15%) and land use (RVI = 8–12%). Other factors such as drainage density, topographic wetness index, aspect, slope, profile curvature, elevation and plan curvature showed lower relative importance (RIV &lt; 10%). Planners should pay attention to minimizing gully erosion along roads, so that river systems and downstream communities are adequately protected.QC 20220207</p
    corecore