114 research outputs found

    Examining the potential of using information on fire detected by MODIS and socio-economic variables to highlight potential coca cultivations in forest areas in Colombia

    Get PDF
    Fires in forest areas are considered an important threat to the Andean Region and the Amazon rainforest. In Colombia, fire is used to expand the agricultural frontier (including illicit crops) which results in deforestation. Given the importance of avoiding deforestation and to control coca expansion, this paper aims to: 1) understand the relationship between fires and deforestation, coca and deforestation and hence coca and fires; 2) examine the potential of using fire data from remote sensing and socio-economic variables to predict the occurrence of new coca fields in forest areas in Colombia. The analysis was undertaken over a ten year period (2000-2010) at a municipality level in to areas with high coca dynamics (Central Region and Putumayo - Caqueta) using Pearson correlation and three different models: a Linear Probability model, a Logit model and a Probit model. The results show that there is a positive relationship between fire and deforestation. Although in general the correlation between coca and deforestation is positive, it differs at the municipality level depending upon the area of forest cover and the coca plot size. The results of the Logit and Probit models show that fire and expulsion, which is a measure of forced displacement by violence, can be used as indicators to highlight coca expansion in forest areas

    Commissioning of the CMS High Level Trigger

    Get PDF
    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008

    Non-Minimal Sneutrino Inflation, Peccei-Quinn Phase Transition and non-Thermal Leptogenesis

    Full text link
    We consider a phenomenological extension of the minimal supersymmetric standard model which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the lightest right-handed sneutrino. Inflation is followed by a Peccei-Quinn phase transition based on renormalizable superpotential terms, which resolves the strong CP and mu problems of the minimal supersymmetric standard model provided that one related parameter of the superpotential is somewhat small. Baryogenesis occurs via non-thermal leptogenesis, which is realized by the inflaton decay. Confronting our scenario with the current observational data on the inflationary observables, the baryon assymetry of the universe, the gravitino limit on the reheating temperature and the upper bound on the light neutrino masses, we constrain the effective Yukawa coupling involved in the decay of the inflaton to relatively small values and the inflaton mass to values lower than 10^12 GeV.Comment: 21 pages including 3 figures; Final versio

    Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis

    Get PDF
    Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases

    Systematic Review of Medicine-Related Problems in Adult Patients with Atrial Fibrillation on Direct Oral Anticoagulants

    Get PDF
    New oral anticoagulant agents continue to emerge on the market and their safety requires assessment to provide evidence of their suitability for clinical use. There-fore, we searched standard databases to summarize the English language literature on medicine-related problems (MRPs) of direct oral anticoagulants DOACs (dabigtran, rivaroxban, apixban, and edoxban) in the treatment of adults with atri-al fibrillation. Electronic databases including Medline, Embase, International Pharmaceutical Abstract (IPA), Scopus, CINAHL, the Web of Science and Cochrane were searched from 2008 through 2016 for original articles. Studies pub-lished in English reporting MRPs of DOACs in adult patients with AF were in-cluded. Seventeen studies were identified using standardized protocols, and two reviewers serially abstracted data from each article. Most articles were inconclusive on major safety end points including major bleeding. Data on major safety end points were combined with efficacy. Most studies inconsistently reported adverse drug reactions and not adverse events or medication error, and no definitions were consistent across studies. Some harmful drug effects were not assessed in studies and may have been overlooked. Little evidence is provided on MRPs of DOACs in patients with AF and, therefore, further studies are needed to establish the safety of DOACs in real-life clinical practice

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere
    corecore