1,280 research outputs found

    Euclid: Covariance of weak lensing pseudo-Cl estimates: Calculation, comparison to simulations, and dependence on survey geometry

    Get PDF
    An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-Cestimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but farther away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters that describe matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10-20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component

    Euclid: the selection of quiescent and star-forming galaxies using observed colours

    Get PDF
    The Euclid mission will observe well over a billion galaxies out to z ∼ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∼70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∼20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available

    Euclid: Covariance of weak lensing pseudo-C_ell estimates. Calculation, comparison to simulations, and dependence on survey geometry

    Get PDF
    An accurate covariance matrix is essential for obtaining reliable cosmological results when using a Gaussian likelihood. In this paper we study the covariance of pseudo-C_ estimates of tomographic cosmic shear power spectra. Using two existing publicly available codes in combination, we calculate the full covariance matrix, including mode-coupling contributions arising from both partial sky coverage and non-linear structure growth. For three different sky masks, we compare the theoretical covariance matrix to that estimated from publicly available N-body weak lensing simulations, finding good agreement. We find that as a more extreme sky cut is applied, a corresponding increase in both Gaussian off-diagonal covariance and non-Gaussian super-sample covariance is observed in both theory and simulations, in accordance with expectations. Studying the different contributions to the covariance in detail, we find that the Gaussian covariance dominates along the main diagonal and the closest off-diagonals, but further away from the main diagonal the super-sample covariance is dominant. Forming mock constraints in parameters describing matter clustering and dark energy, we find that neglecting non-Gaussian contributions to the covariance can lead to underestimating the true size of confidence regions by up to 70 per cent. The dominant non-Gaussian covariance component is the super-sample covariance, but neglecting the smaller connected non-Gaussian covariance can still lead to the underestimation of uncertainties by 10--20 per cent. A real cosmological analysis will require marginalisation over many nuisance parameters, which will decrease the relative importance of all cosmological contributions to the covariance, so these values should be taken as upper limits on the importance of each component

    Euclid: Detecting Solar System objects in Euclid images and classifying them using Kohonen self-organising maps

    Get PDF
    The ESA Euclid mission will survey more than 14 000 deg2 of the sky in visible and near-infrared wavelengths, mapping the extragalactic sky to constrain our cosmological model of the Universe. Although the survey focusses on regions further than 15 from the ecliptic, it should allow for the detection of more than about 105 Solar System objects (SSOs). After simulating the expected signal from SSOs in Euclid images acquired with the visible camera (VIS), we describe an automated pipeline developed to detect moving objects with an apparent velocity in the range of 0.1a-10′′ h-1, typically corresponding to sources in the outer Solar System (from Centaurs to Kuiper-belt objects). In particular, the proposed detection scheme is based on SExtractor software and on applying a new algorithm capable of associating moving objects amongst different catalogues. After applying a suite of filters to improve the detection quality, we study the expected purity and completeness of the SSO detections. We also show how a Kohonen self-organising neural network can be successfully trained (in an unsupervised fashion) to classify stars, galaxies, and SSOs. By implementing an early-stopping method in the training scheme, we show that the network can be used in a predictive way, allowing one to assign the probability of each detected object being a member of each considered class

    Euclid preparation: XII. Optimizing the photometric sample of the Euclid survey for galaxy clustering and galaxy-galaxy lensing analyses

    Get PDF
    Photometric redshifts (photo-zs) are one of the main ingredients in the analysis of cosmological probes. Their accuracy particularly affects the results of the analyses of galaxy clustering with photometrically selected galaxies (GCph) and weak lensing. In the next decade, space missions such as Euclid will collect precise and accurate photometric measurements for millions of galaxies. These data should be complemented with upcoming ground-based observations to derive precise and accurate photo-zs. In this article we explore how the tomographic redshift binning and depth of ground-based observations will affect the cosmological constraints expected from the Euclid mission. We focus on GCph and extend the study to include galaxy-galaxy lensing (GGL). We add a layer of complexity to the analysis by simulating several realistic photo-z distributions based on the Euclid Consortium Flagship simulation and using a machine learning photo-z algorithm. We then use the Fisher matrix formalism together with these galaxy samples to study the cosmological constraining power as a function of redshift binning, survey depth, and photo-z accuracy. We find that bins with an equal width in redshift provide a higher figure of merit (FoM) than equipopulated bins and that increasing the number of redshift bins from ten to 13 improves the FoM by 35% and 15% for GCph and its combination with GGL, respectively. For GCph, an increase in the survey depth provides a higher FoM. However, when we include faint galaxies beyond the limit of the spectroscopic training data, the resulting FoM decreases because of the spurious photo-zs. When combining GCph and GGL, the number density of the sample, which is set by the survey depth, is the main factor driving the variations in the FoM. Adding galaxies at faint magnitudes and high redshift increases the FoM, even when they are beyond the spectroscopic limit, since the number density increase compensates for the photo-z degradation in this case. We conclude that there is more information that can be extracted beyond the nominal ten tomographic redshift bins of Euclid and that we should be cautious when adding faint galaxies into our sample since they can degrade the cosmological constraints

    Euclid preparation: XXVIII. Forecasts for ten different higher-order weak lensing statistics

    Get PDF
    Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of Euclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm, σ 8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with Euclid. The data used in this analysis are publicly released with the paper

    Euclid: Estimation of the impact of correlated readout noise for flux measurements with the euclid NISP instrument

    Get PDF
    The Euclid satellite, to be launched by ESA in 2022, will be a major instrument for cosmology for the next decades. Euclid is composed of two instruments: the Visible instrument and the Near Infrared Spectrometer and Photometer (NISP). In this work, we estimate the implications of correlated readout noise in the NISP detectors for the final in-flight flux measurements. Considering the multiple accumulated readout mode, for which the UTR (Up The Ramp) exposure frames are averaged in groups, we derive an analytical expression for the noise covariance matrix between groups in the presence of correlated noise. We also characterize the correlated readout noise properties in the NISP engineering-grade detectors using long dark integrations. For this purpose, we assume a (1/f)α-like noise model and fit the model parameters to the data, obtaining typical values of σ=19.70.8+1.1\sigma ={19.7}_{-0.8}^{+1.1} e− Hz−0.5, fknee=(5.21.3+1.8)×103Hz{f}_{\mathrm{knee}}=({5.2}_{-1.3}^{+1.8})\times {10}^{-3}\,\mathrm{Hz} and α=1.240.21+0.26\alpha ={1.24}_{-0.21}^{+0.26}. Furthermore, via realistic simulations and using a maximum likelihood flux estimator we derive the bias between the input flux and the recovered one. We find that using our analytical expression for the covariance matrix of the correlated readout noise we diminish this bias by up to a factor of four with respect to the white noise approximation for the covariance matrix. Finally, we conclude that the final bias on the in-flight NISP flux measurements should still be negligible even in the white readout noise approximation, which is taken as a baseline for the Euclid on-board processing to estimate the on-sky flux

    Euclid Preparation. XXVIII. Forecasts for ten different higher-order weak lensing statistics

    Full text link
    Recent cosmic shear studies have shown that higher-order statistics (HOS) developed by independent teams now outperform standard two-point estimators in terms of statistical precision thanks to their sensitivity to the non-Gaussian features of large-scale structure. The aim of the Higher-Order Weak Lensing Statistics (HOWLS) project is to assess, compare, and combine the constraining power of ten different HOS on a common set of EuclidEuclid-like mocks, derived from N-body simulations. In this first paper of the HOWLS series, we computed the nontomographic (Ωm\Omega_{\rm m}, σ8\sigma_8) Fisher information for the one-point probability distribution function, peak counts, Minkowski functionals, Betti numbers, persistent homology Betti numbers and heatmap, and scattering transform coefficients, and we compare them to the shear and convergence two-point correlation functions in the absence of any systematic bias. We also include forecasts for three implementations of higher-order moments, but these cannot be robustly interpreted as the Gaussian likelihood assumption breaks down for these statistics. Taken individually, we find that each HOS outperforms the two-point statistics by a factor of around two in the precision of the forecasts with some variations across statistics and cosmological parameters. When combining all the HOS, this increases to a 4.54.5 times improvement, highlighting the immense potential of HOS for cosmic shear cosmological analyses with EuclidEuclid. The data used in this analysis are publicly released with the paper.Comment: 33 pages, 24 figures, main results in Fig. 19 & Table 5, version published in A&

    Euclid: the selection of quiescent and star-forming galaxies using observed colours

    Get PDF
    The Euclid mission will observe well over a billion galaxies out to z ∼ 6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well-known colour techniques such as the ‘UVJ’ diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u − VIS) and (VIS − J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above ∼70 per cent and with less than 15 per cent contamination at redshifts in the range 0.75 65 per cent completeness level and contamination below 20 per cent at 1 < z < 2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only ∼20 per cent complete at z < 3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available

    Euclid preparation: VIII. The Complete Calibration of the Colour–Redshift Relation survey: VLT/KMOS observations and data release

    Get PDF
    The Complete Calibration of the Colour–Redshift Relation survey (C3R2) is a spectroscopic effort involving ESO and Keck facilities designed specifically to empirically calibrate the galaxy colour–redshift relation – P(z|C) to the Euclid depth (iAB = 24.5) and is intimately linked to the success of upcoming Stage IV dark energy missions based on weak lensing cosmology. The aim is to build a spectroscopic calibration sample that is as representative as possible of the galaxies of the Euclid weak lensing sample. In order to minimise the number of spectroscopic observations necessary to fill the gaps in current knowledge of the P(z|C), self-organising map (SOM) representations of the galaxy colour space have been constructed. Here we present the first results of an ESO@VLT Large Programme approved in the context of C3R2, which makes use of the two VLT optical and near-infrared multi-object spectrographs, FORS2 and KMOS. This data release paper focuses on high-quality spectroscopic redshifts of high-redshift galaxies observed with the KMOS spectrograph in the near-infrared H- and K-bands. A total of 424 highly-reliable redshifts are measured in the 1.3 ≤ z ≤ 2.5 range, with total success rates of 60.7% in the H-band and 32.8% in the K-band. The newly determined redshifts fill 55% of high (mainly regions with no spectroscopic measurements) and 35% of lower (regions with low-resolution/low-quality spectroscopic measurements) priority empty SOM grid cells. We measured Hα fluxes in a 1. 002 radius aperture from the spectra of the spectroscopically confirmed galaxies and converted them into star formation rates. In addition, we performed an SED fitting analysis on the same sample in order to derive stellar masses, E(B − V), total magnitudes, and SFRs. We combine the results obtained from the spectra with those derived via SED fitting, and we show that the spectroscopic failures come from either weakly star-forming galaxies (at z 2 galaxies
    corecore