104 research outputs found

    Proof-of-Concept Study of the NOTI Chelating Platform: Preclinical Evaluation of 64Cu-Labeled Mono- and Trimeric c(RGDfK) Conjugates

    Get PDF
    Purpose We recently developed a chelating platform based on the macrocycle 1,4,7-triazacyclononane with up to three five-membered azaheterocyclic arms for the preparation of 68Ga- and 64Cu-based radiopharmaceuticals. Based on this platform, the chelator scaffold NOTI-TVA with three additional carboxylic acid groups for bioconjugation was synthesized and characterized. The primary aims of this proof-of-concept study were (1) to evaluate if trimeric radiotracers on the basis of the NOTI-TVA 6 scaffold can be developed, (2) to determine if the additional substituents for bioconjugation at the non-coordinating NH atoms of the imidazole residues of the building block NOTI influence the metal binding properties, and (3) what influence multiple targeting vectors have on the biological performance of the radiotracer. The cyclic RGDfK peptide that specifically binds to the αvß3 integrin receptor was selected as the biological model system. Procedures Two different synthetic routes for the preparation of NOTI-TVA 6 were explored. Three c(RGDfK) peptide residues were conjugated to the NOTI-TVA 6 building block by standard peptide chemistry providing the trimeric bioconjugate NOTI-TVA-c(RGDfK)3 9. Labeling of 9 with [64Cu]CuCl2 was performed manually at pH 8.2 at ambient temperature. Binding affinities of Cu-8, the Cu2+ complex of the previously described monomer NODIA-Me-c(RGDfK) 8, and the trimer Cu-9 to integrin αvß3 were determined in competitive cell binding experiments in the U-87MG cell line. The pharmacokinetics of both 64Cu-labeled conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were determined by small-animal PET imaging and ex vivo biodistribution studies in mice bearing U-87MG xenografts. Results Depending on the synthetic route, NOTI-TVA 6 was obtained with an overall yield up to 58 %. The bioconjugate 9 was prepared in 41 % yield. Both conjugates [64Cu]Cu-8 and [64Cu]Cu-9 were radiolabeled quantitatively at ambient temperature in high molar activities of Am ~ 20 MBq nmol−1 in less than 5 min. Competitive inhibitory constants IC50 of c(RDGfK) 7, Cu-8, and Cu-9 were determined to be 159.5 ± 1.3 nM, 256.1 ± 2.1 nM, and 99.5 ± 1.1 nM, respectively. In small-animal experiments, both radiotracers specifically delineated αvß3 integrin-positive U-87MG tumors with low uptake in non-target organs and rapid blood clearance. The trimer [64Cu]Cu-9 showed a ~ 2.5-fold higher tumor uptake compared with the monomer [64Cu]Cu-8. Conclusions Functionalization of NOTI at the non-coordinating NH atoms of the imidazole residues for bioconjugation was straightforward and allowed the preparation of a homotrimeric RGD conjugate. After optimization of the synthesis, required building blocks to make NOTI-TVA 6 are now available on multi-gram scale. Modifications at the imidazole groups had no measurable impact on metal binding properties in vitro and in vivo suggesting that the NOTI scaffold is a promising candidate for the development of 64Cu-labeled multimeric/multifunctional radiotracers

    Solving Integer Linear Programs by Exploiting Variable-Constraint Interactions: A Survey

    Get PDF
    Integer Linear Programming (ILP) is among the most successful and general paradigms for solving computationally intractable optimization problems in computer science. ILP is NP-complete, and until recently we have lacked a systematic study of the complexity of ILP through the lens of variable-constraint interactions. This changed drastically in recent years thanks to a series of results that together lay out a detailed complexity landscape for the problem centered around the structure of graphical representations of instances. The aim of this survey is to summarize these recent developments, put them into context and a unified format, and make them more approachable for experts from many diverse backgrounds

    Early molecular imaging response assessment based on determination of total viable tumor burden in [68Ga]Ga-PSMA-11 PET/CT independently predicts overall survival in [177Lu]Lu-PSMA-617 radioligand therapy

    Get PDF
    Purpose In patients with metastatic castration-resistant prostate cancer (mCRPC) treated with prostate-specific membrane antigen-targeted radioligand therapy (PSMA-RLT), the predictive value of PSMA PET/CT-derived response is still under investigation. Early molecular imaging response based on total viable tumor burden and its association with overall survival (OS) was explored in this study. Methods Sixty-six mCRPC patients who received [177Lu]Lu-PSMA-617 RLT within a prospective patient registry (REALITY Study, NCT04833517) were analyzed. Patients received a [68Ga]Ga-PSMA-11 PET/CT scan before the first and after the second cycle of PSMA-RLT. Total lesion PSMA (TLP) was determined by semiautomatic whole-body tumor segmentation. Molecular imaging response was assessed by change in TLP and modified PERCIST criteria. Biochemical response was assessed using standard serum PSA and PCWG3 criteria. Both response assessment methods and additional baseline parameters were analyzed regarding their association with OS by univariate and multivariable analysis. Results By molecular imaging, 40/66 (60.6%) patients showed partial remission (PR), 19/66 (28.7%) stable disease (SD), and 7/66 (10.6%) progressive disease (PD). Biochemical response assessment revealed PR in 34/66 (51.5%) patients, SD in 20/66 (30.3%), and PD in 12/66 (18.2%). Response assessments were concordant in 49/66 (74.3%) cases. On univariate analysis, both molecular and biochemical response (p = 0.001 and 0.008, respectively) as well as two baseline characteristics (ALP and ECOG) were each significantly associated with OS. The median OS of patients showing molecular PR was 24.6 versus 10.7 months in the remaining patients (with SD or PD). On multivariable analysis molecular imaging response remained an independent predictor of OS (p = 0.002), eliminating biochemical response as insignificant (p = 0.515). Conclusion The new whole-body molecular imaging–derived biomarker, early change of total lesion PSMA (TLP), independently predicts overall survival in [177Lu]Lu-PSMA-617 RLT in mCRPC, outperforming conventional PSA-based response assessment. TLP might be considered a more distinguished and advanced biomarker for monitoring PSMA-RLT over commonly used serum PSA

    Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line

    Get PDF
    Polymer particles consisting of a biodegradable poly[lactide-co-glycolide] (PLGA) core and a thermoresponsive shell have been formulated to encapsulate the dye rhodamine 6G and the potent cytotoxic drug paclitaxel. Cellular uptake of these particles is significantly enhanced above the thermal transition temperature (TTT) of the polymer shells in the human breast carcinoma cell line MCF-7 as determined by flow cytometry and fluorescence microscopy. Paclitaxel-loaded particles display reduced and enhanced cytotoxicity below and above the TTT respectively compared to unencapsulated drug. The data suggests a potential route to enhanced anti-cancer efficacy through temperature-mediated cell targeting.© The Royal Society of Chemistry 2013

    Tumor Sink Effect with Prostate-Specific Membrane Antigen-Targeted Theranostics in Patients with Metastatic Castration-Resistant Prostate Cancer: Intra-Individual Evaluations

    Get PDF
    “Tumor sink effects”, decreased physiological uptake of radiopharmaceuticals due to sequestration by a tumor, may impact radioligand therapy (RLT) toxicity and dosing. We investigated these effects with prostate-specific membrane antigen (PSMA)-targeted radiopharmaceuticals in the healthy organs-at-risk (the parotid glands, kidneys, liver, and spleen) of 33 patients with metastatic castration-resistant prostate cancer (mCRPC). We retrospectively performed three intra-individual comparisons. First, we correlated changes from baseline to post-RLT (after two 177-lutetium (177Lu)-PSMA-617 cycles) in total lesional PSMA (∆TLP) and organ mean standardized uptake values (∆SUVmean). Second, in 25 RLT responders, we compared the organ SUVmean post-RLT versus that at baseline. Lastly, we correlated the baseline TLP and organ SUVmean. Data were acquired via 68-gallium-PSMA-11 positron emission tomography before the first and after the second 177Lu-PSMA-617 cycle. In the parotid glands and spleen, ∆TLP and ∆SUVmean showed a significant inverse correlation (r = −0.40, p = 0.023 and r = −0.36, p = 0.042, respectively). Additionally, in those tissues, the median organ SUVmean rose significantly from baseline after the response to RLT (p ≀ 0.022), and the baseline TLP and SUVmean were significantly negatively correlated (r = −0.44, p = 0.01 and r = −0.42, p = 0.016, respectively). These observations suggest tumor sink effects with PSMA-targeted radiopharmaceuticals in the salivary glands and spleen of patients with mCRPC

    Smart illuminative Charging (SiC) of Future Electric Vehicles Using Roadway Infrastructure

    Get PDF
    Inspired by the fact that there is an immense amount of renewable energy sources available on the roadways such as mechanical pressure and frictional heat, this paper presents the development and implementation of an innovative charging technique for future electric vehicles (EVs) by fully utilizing the existing roadways and the state-of-the-art nanotechnology. The paper introduces a novel wireless charging system that uses LEDs powered by piezoelectric nanomaterials as the energy transmitter source and thin film solar panels placed at the bottom of the EVs as the receiver, which is then poised to deliver the harvested energy to the vehicle’s battery. The lab-scale prototype device was developed to testify the proposed mechanism of illuminative charging (i.e., “light” couples pavement and vehicle as a wireless energy transfer medium), and the synthesized large-area nanomaterial produced high output voltages of up to 52 mV upon mechanical pressure

    Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari.

    Get PDF
    Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.BBSR

    High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data

    Get PDF
    We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. 2.5-D CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilized to map and monitor seafloor mineralization, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems

    Co-ordinated Role of TLR3, RIG-I and MDA5 in the Innate Response to Rhinovirus in Bronchial Epithelium

    Get PDF
    The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8–12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases

    The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    Get PDF
    Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728
    • 

    corecore