17 research outputs found

    Incorporation of Na and S in bamboo coral skeletons

    Get PDF
    Ocean environmental conditions can be inferred from the chemical composition of bamboo coral skeletons. The high magnesium calcite internodes of these long-living octocorals may therefore represent a potential archive for seawater properties such as salinity or temperature where instrumental time series are absent. To extend these time series into the past using a natural archive the principles of temperature and salinity signal incorporation into cold-water coral skeletal material need to be investigated. Since skeletal Na and S concentrations have been proposed as environmental proxies, we mapped the spatial distribution and concentration of these elements in two Atlantic specimens of Keratoisis grayi (family Isididae). These measurements were conducted with an electron microprobe applying a spatial resolution of 4 ÎŒm. The mean apparent distribution coefficient of Na/Ca for the two samples was within 2.5 and 2.8*10−4, while that of S shows a similar depletion relative to seawater with 3.8 and 3.6*10−3. The two elements show an inverse correlation in bamboo coral skeletons. The mean apparent distribution coefficient of Na is similar to that of abiotic calcites. This similarity can be interpreted as the absence of significant vital effects for skeletal Na/Ca. Hence it corroborates the idea that the average skeletal composition of bamboo corals holds the potential to record past seawater conditions. In contrast, it appears unlikely that the spatial variations of the element distribution of seemingly simultaneously precipitated material along growth rings are exclusively controlled by environmental factors. We further exclude Rayleigh fractionation, ion-specific pumping, and Ca/proton exchange as the driver of Na and S distribution in bamboo corals. Instead, we adapt a calcification model originally proposed for scleractinians to bamboo corals. This model can explain the observed distribution of Na and S in the skeleton by a combination of Ca/proton pumping, bicarbonate active transport, and the formation of an organic skeletal matrix. The adapted model can further be used to predict the theoretical behaviour of other elements and disentangle vital effects from external factors influencing compositional features. It is therefore a useful tool for future studies on the potential of bamboo corals as environmental archives

    Shelled pteropods in peril: Assessing vulnerability in a high CO2 ocean

    Get PDF
    The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making

    The potential of bamboo corals to record environmental conditions in their calcitic skeletons

    Get PDF
    The ocean’s physicochemical variability is not well understood despite its importance for the world’s climate because of rare instrumental time series. This issue can be resolved through natural archives that recorded past environmental conditions such as corals. Bamboo corals, thriving in water depths down to 4000 m, offer the potential to record environmental parameters over a wide range of oceanic conditions. This dissertation provides a detailed look into the chemical composition of bamboo coral skeletons to distinguish between environmental and biomineralisation controls over the skeletal composition. The ability of bamboo corals to record seawater temperature and nutrient availability was investigated by measuring the distribution of Mg and Ba, respectively, in the internode of an Atlantic specimen. The mean Mg/Ca composition of a bamboo coral can be used to reconstruct the ambient seawater temperature while mean Ba/Ca was found to record [Ba]SW. Conversely, the micron-scale skeletal Mg and Ba composition is strongly impacted by coral physiology. The use of skeletal Na and S concentrations as environmental proxies in marine calcifiers is debated and was therefore evaluated in two Atlantic bamboo corals. The microscale distribution of Na and S can show a concentric structure and zig zag patterns as found for Mg. The heterogeneity indicates a main control of the coral physiology over the skeletal composition. The B elemental as well as its isotopic composition in calcium carbonates have been used to study the ambient pH of the corals’ calcifying fluid (CF). The B/C and B isotopic spatial distribution in an Atlantic and a Pacific bamboo coral were measured in the bulk internode material and the purified calcite fraction. Our results suggest that besides CF pH, the skeletal boron isotopic composition of bamboo corals might be influenced by isotopically light borate influx to the CF, organic matter induced isotope fractionation or kinetic isotope effects

    The influence of skeletal micro-structures on potential proxy records in a bamboo coral

    Get PDF
    Assessing the physicochemical variability of the deeper ocean is currently hampered by limited instrumental time series and proxy records. Bamboo corals (Isididae) form a cosmopolitan family of calcitic deep sea corals that could fill this information gap via geochemical information recorded in their skeletons. Here we evaluate the suitability of high-resolution chemical imaging of bamboo coral skeletons for temperature and nutrient reconstruction. The applied elemental mapping techniques allow to verify the suitability of the chosen transect on the sample section for paleo-reconstructions and enhance the statistical precision of the reconstruction. We measured Mg/Ca via electron microprobe at 1 ”m resolution and Ba/Ca via laser ablation ICP-MS at 35 ”m resolution in a historic specimen of Keratoisis grayi from the Blake Plateau off Eastern Florida. Long-term growth temperatures of 7.1 ± 3.4 °C (± 2 SD) that are in agreement with recent ambient temperature range can be reconstructed from Mg/Ca ratios provided that anomalously Mg-enriched structural features around the central axis and isolated features related to tissue attachment are avoided for reconstruction. Skeletal Ba/Ca measurements reflect mean seawater barium [Ba]SW concentrations ([Ba]SW = 51 ± 24 nmol kg-1 (± 2 SD)), in agreement with instrumental data (47 nmol kg-1). We show for the first time that Ba/Ca forms concentric structures in a bamboo coral skeleton section. Our investigations suggest that, while bamboo coral skeletons do record environmental parameters in their mean chemical composition, the magnitude of environmental variability reconstructed from high-resolution chemical maps exceeds that expected from instrumental time series. This necessitates additional investigation of the factors driving bamboo coral skeletal composition

    Mg/Ca, Ba/Ca, Mg vs. S and fluorescence measured with EMPA, CRM and LA-ICP-MS in a bamboo coral from the Blake Plateau

    No full text
    Assessing the physicochemical variability of the deeper ocean is currently hampered by limited instrumental time series and proxy records. Bamboo corals (Isididae) form a cosmopolitan family of calcitic deep sea corals that could fill this information gap via geochemical information recorded in their skeletons. Here we evaluate the suitability of high-resolution chemical imaging of bamboo coral skeletons for temperature and nutrient reconstruction. The applied elemental mapping techniques allow to verify the suitability of the chosen transect on the sample section for paleo-reconstructions and enhance the statistical precision of the reconstruction. We measured Mg/Ca via electron microprobe at 1 ÎŒm resolution and Ba/Ca via laser ablation ICP-MS at 35 ÎŒm resolution in a historic specimen of Keratoisis grayi from the Blake Plateau off Eastern Florida. Long-term growth temperatures of 7.1 ± 3.4 °C (2SD) that are in agreement with recent ambient temperature range can be reconstructed from Mg/Ca ratios provided that anomalously Mg-enriched structural features around the central axis and isolated features related to tissue attachment are avoided for reconstruction. Skeletal Ba/Ca measurements reflect mean seawater barium [Ba]SW concentrations ([Ba]SW = 51 ± 24 nmol kg−1 (2SD)), in agreement with instrumental data (47 nmol kg−1). We show for the first time that Ba/Ca forms concentric structures in a bamboo coral skeleton section. Our investigations suggest that, while bamboo coral skeletons do record environmental parameters in their mean chemical composition, the magnitude of environmental variability reconstructed from high-resolution chemical maps exceeds that expected from instrumental time series. This necessitates additional investigation of the factors driving bamboo coral skeletal composition
    corecore