SOPRAN 2015 Annual Meeting Mainz

Halocarbons from the Peruvian upwelling system

H. Hepach¹, B. Quack¹, S. Fuhlbrügge¹, S. Raimund¹, E. L. Atlas², A. Engel¹, A. Bracher^{3,4}, S. Flöter¹ and K. Krüger⁵

- 1 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Germany
- 2 Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, USA
- 3 Helmholtz-University Young Investigators Group PHYTOOPTICS, Alfred-Wegener-Institute (AWI) Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- 4 Institute of Environmental Physics, University of Bremen, Germany
- 5 Department of Geosciences, University of Oslo, Oslo, Norway

Halocarbons in the tropical ocean

The M91 cruise

M91 (RV Meteor)

Callao, Peru to Callao, Peru (December 1 – December 26 2012)

(MODIS Aqua data from December 2012)

Environmental conditions during M91

Halocarbons during M91

- Elevated atmospheric halocarbons above the upwelling
- Bromocarbons in surface water in comparison to other upwelling regions in moderate concentrations
- Higher CH₃I than CHBr₃

lodocarbon surface concentrations

lodocarbon sources – upwelling and phytoplankton

- Relationship with cooler water → sources are in upwelling
- lodocarbons correlate significantly with diatoms (dominant species in the surface) → potential source organisms

lodocarbons and SML parameters

- Enhanced DOM concentrations such as sugars in the south where iodocarbons are elevated
- DOM constitutents
 may be important
 halocarbon
 precursers →
 indirect biological
 production

SML Data from Engel et al.

GEOMAR

Wind speed [m s⁻¹]

Iodocarbon sea-to-air-fluxes

Origin of atmospheric iodocarbons

Tropical lifetime (WMO, 2011)

Summary and conclusions

- Peruvian upwelling is a source for halocarbons
- Only a moderate source for bromocarbons, but a strong source for iodocarbons
- Probably direct and indirect biological production as source for iodocarbons
- Very high iodocarbon sea-to-air fluxes despite low wind speeds

 Large oceanic concentrations contribute significantly to tropospheric iodine loading in the tropical East Pacific → high atmospheric mixing ratios of CH₃I, CH₂CII and CH₂I₂ despite their very short tropical lifetimes

lodocarbon depth profiles

