118 research outputs found
Improved cosmic microwave background (de-)lensing using general spherical harmonic transforms
Deep cosmic microwave background polarization experiments allow a very
precise internal reconstruction of the gravitational lensing signal in
pricinple. For this aim, likelihood-based or Bayesian methods are typically
necessary, where very large numbers of lensing and delensing remappings on the
sphere are sometimes required before satisfactory convergence. We discuss here
an optimized piece of numerical code in some detail that is able to efficiently
perform both the lensing operation and its adjoint (closely related to
delensing) to arbitrary accuracy, using nonuniform fast Fourier transform
technology. Where applicable, we find that the code outperforms current
widespread software by a very wide margin. It is able to produce
high-resolution maps that are accurate enough for next-generation cosmic
microwave background experiments on the timescale of seconds on a modern
laptop. The adjoint operation performs similarly well and removes the need for
the computation of inverse deflection fields. This publicly available code
enables de facto efficient spherical harmonic transforms on completely
arbitrary grids, and it might be applied in other areas as well.Comment: 8 pages, 3 figures, final A&
Foreground Separation and Constraints on Primordial Gravitational Waves with the PICO Space Mission
PICO is a concept for a NASA probe-scale mission aiming to detect or
constrain the tensor to scalar ratio , a parameter that quantifies the
amplitude of inflationary gravity waves. We carry out map-based component
separation on simulations with five foreground models and input values
and . We forecast determinations using a
Gaussian likelihood assuming either no delensing or a residual lensing factor
= 27%. By implementing the first full-sky, post
component-separation, map-domain delensing, we show that PICO should be able to
achieve = 22% - 24%. For four of the five foreground models we
find that PICO would be able to set the constraints r < 1.3 \times 10^{-4}
\,\, \mbox{to} \,\, r <2.7 \times 10^{-4}\, (95\%) if , the
strongest constraints of any foreseeable instrument. For these models,
is recovered with confidence levels between and
. We find weaker, and in some cases significantly biased, upper
limits when removing few low or high frequency bands. The fifth model gives a
detection when and a bias with .
However, by correlating determinations from many small 2.5% sky areas with
the mission's 555 GHz data we identify and mitigate the bias. This analysis
underscores the importance of large sky coverage. We show that when only low
multipoles are used, the non-Gaussian shape of the true
likelihood gives uncertainties that are on average 30% larger than a Gaussian
approximation.Comment: 34 pages, 13 figures, published in JCA
Indirect excitation of ultrafast demagnetization
Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions
Stimulated resonant inelastic X-ray scattering in a solid
When materials are exposed to X-ray pulses with sufficiently high intensity, various nonlinear effects can occur. The most fundamental one consists of stimulated electronic decays after resonant absorption of X-rays. Such stimulated decays enhance the number of emitted photons and the emission direction is confined to that of the stimulating incident photons which clone themselves in the process. Here we report the observation of stimulated resonant elastic (REXS) and inelastic (RIXS) X-ray scattering near the cobalt L3 edge in solid Co/Pd multilayer samples. We observe an enhancement of order 106 of the stimulated over the conventional spontaneous RIXS signal into the small acceptance angle of the RIXS spectrometer. We also find that in solids both stimulated REXS and RIXS spectra contain contributions from inelastic electron scattering processes, even for ultrashort 5 fs pulses. Our results reveal the potential and caveats of the development of stimulated RIXS in condensed matter
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
Intergenerational impacts of maternal mortality: Qualitative findings from rural Malawi
Background: Maternal mortality, although largely preventable, remains unacceptably high in developing countries such as Malawi and creates a number of intergenerational impacts. Few studies have investigated the far-reaching impacts of maternal death beyond infant survival. This study demonstrates the short- and long-term impacts of maternal death on children, families, and the community in order to raise awareness of the true costs of maternal mortality and poor maternal health care in Neno, a rural and remote district in Malawi. Methods: Qualitative in-depth interviews were conducted to assess the impact of maternal mortality on child, family, and community well-being. We conducted 20 key informant interviews, 20 stakeholder interviews, and six sex-stratified focus group discussions in the seven health centers that cover the district. Transcripts were translated, coded, and analyzed in NVivo 10. Results: Participants noted a number of far-reaching impacts on orphaned children, their new caretakers, and extended families following a maternal death. Female relatives typically took on caregiving responsibilities for orphaned children, regardless of the accompanying financial hardship and frequent lack of familial or governmental support. Maternal death exacerbated children’s vulnerabilities to long-term health and social impacts related to nutrition, education, employment, early partnership, pregnancy, and caretaking. Impacts were particularly salient for female children who were often forced to take on the majority of the household responsibilities. Participants cited a number of barriers to accessing quality child health care or support services, and many were unaware of programming available to assist them in raising orphaned children or how to access these services. Conclusions: In order to both reduce preventable maternal mortality and diminish the impacts on children, extended families, and communities, our findings highlight the importance of financing and implementing universal access to emergency obstetric and neonatal care, and contraception, as well as social protection programs, including among remote populations
Search for large extra dimensions in the production of jets and missing transverse energy in p(p)over-bar collisions at root s=1.96 TeV
We present the results of a search for new physics in the jets plus missing transverse energy data sample collected from 368 pb(-1) of p (p) over bar collisions at root s = 1.96 TeV recorded by the Collider Detector at Fermilab. We compare the number of events observed in the data with a data-based estimate of the standard model backgrounds contributing to this signature. We observe no significant excess of events, and we interpret this null result in terms of lower limits on the fundamental Planck scale for a large extra dimensions scenario
Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency
CMB-S4
We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4
- …