56 research outputs found

    A Genomic Survey of HECT Ubiquitin Ligases in Eukaryotes Reveals Independent Expansions of the HECT System in Several Lineages

    Get PDF
    The posttranslational modification of proteins by the ubiquitination pathway is an important regulatory mechanism in eukaryotes. To date, however, studies on the evolutionary history of the proteins involved in this pathway have been restricted to E1 and E2 enzymes, whereas E3 studies have been focused mainly in metazoans and plants. To have a wider perspective, here we perform a genomic survey of the HECT family of E3 ubiquitin-protein ligases, an important part of this posttranslational pathway, in genomes from representatives of all major eukaryotic lineages. We classify eukaryotic HECTs and reconstruct, by phylogenetic analysis, the putative repertoire of these proteins in the last eukaryotic common ancestor (LECA). Furthermore, we analyze the diversity and complexity of protein domain architectures of HECTs along the different extant eukaryotic lineages. Our data show that LECA had six different HECTs and that protein expansion and N-terminal domain diversification shaped HECT evolution. Our data reveal that the genomes of animals and unicellular holozoans considerably increased the molecular and functional diversity of their HECT system compared with other eukaryotes. Other eukaryotes, such as the Apusozoa Thecanomas trahens or the Heterokonta Phytophthora infestans, independently expanded their HECT repertoire. In contrast, plant, excavate, rhodophyte, chlorophyte, and fungal genomes have a more limited enzymatic repertoire. Our genomic survey and phylogenetic analysis clarifies the origin and evolution of different HECT families among eukaryotes and provides a useful phylogenetic framework for future evolutionary studies of this regulatory pathway

    Insights into the origin of metazoan filopodia and microvilli.

    Get PDF
    Filopodia are fine actin-based cellular projections used for both environmental sensing and cell motility, and they are essential organelles for metazoan cells. In this study, we reconstruct the origin of metazoan filopodia and microvilli. We first report on the evolutionary assembly of the filopodial molecular toolkit and show that homologs of many metazoan filopodial components, including fascin and myosin X, were already present in the unicellular or colonial progenitors of metazoans. Furthermore, we find that the actin crosslinking protein fascin localizes to filopodia-like structures and microvilli in the choanoflagellate Salpingoeca rosetta. In addition, homologs of filopodial genes in the holozoan Capsaspora owczarzaki are upregulated in filopodia-bearing cells relative to those that lack them. Therefore, our findings suggest that proteins essential for metazoan filopodia and microvilli are functionally conserved in unicellular and colonial holozoans and that the last common ancestor of metazoans bore a complex and specific filopodial machinery

    The Capsaspora genome reveals a complex unicellular prehistory of animals

    Get PDF
    Suga, Hiroshi et al.-- This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans. © 2013 Macmillan Publishers Limited. All rights reserved.H.S. was supported by the Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme. Genome sequencing, assembly and some supporting analysis was supported by grants from the National Human Genome Research Institute (HG003067-05 through HG003067-10), as were C.N., C.R., B.H. and Z.C. B.F.L. and A.J.R. acknowledge financial support through the Canadian Research Chair program. This study was supported by an ICREA contract, a European Research Council Starting Grant (ERC-2007-StG-206883) and a grant (BFU2011-23434) from the Spanish Ministry of the Economy and Competitiveness (MINECO) awarded to I.R.-T. M.V. was supported by CNRS, the Agence Nationale de la Recherche (ANR grant BLAN-0294) and the Institut Universitaire de France.Peer Reviewe

    A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution

    Get PDF
    Histones and associated chromatin proteins have essential functions in eukaryotic genome organization and regulation. Despite this fundamental role in eukaryotic cell biology, we lack a phylogenetically comprehensive understanding of chromatin evolution. Here, we combine comparative proteomics and genomics analysis of chromatin in eukaryotes and archaea. Proteomics uncovers the existence of histone post-translational modifications in archaea. However, archaeal histone modifications are scarce, in contrast with the highly conserved and abundant marks we identify across eukaryotes. Phylogenetic analysis reveals that chromatin-associated catalytic functions (for example, methyltransferases) have pre-eukaryotic origins, whereas histone mark readers and chaperones are eukaryotic innovations. We show that further chromatin evolution is characterized by expansion of readers, including capture by transposable elements and viruses. Overall, our study infers detailed evolutionary history of eukaryotic chromatin: from its archaeal roots, through the emergence of nucleosome-based regulation in the eukaryotic ancestor, to the diversification of chromatin regulators and their hijacking by genomic parasites.Research in the A.S.-P. group was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 851647) and the Spanish Ministry of Science and Innovation (PGC2018-098210-A-I00). We also acknowledge support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme (Generalitat de Catalunya). C.N. is supported by an FPI PhD fellowship from the Spanish Ministry of Economy, Industry and Competitiveness (MEIC). X.G.-B. is supported by a Juan de la Cierva fellowship (FJC2018-036282-I) from MEIC. I.R.-T. was supported by a European Research Council (grant no. 616960). B.F.L. was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2017-05411) and by the ‘Fonds de Recherche Nature et Technologie’, Quebec. P.L.-G. and D.M. were supported by a Moore and Simons foundations grant (GBMF9739) and by European Research Council advanced grants (322669, 787904). Research in the C.S. group was supported by the ERC through project TACKLE (advanced grant no. 695192)

    Comparative genomic analysis of the ‘pseudofungus’ Hyphochytrium catenoides

    Get PDF
    Eukaryotic microbes have three primary mechanisms for obtaining nutrients and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated with the latter two functions arose independently multiple times in the eukaryotes. The Fungi successfully coupled osmotrophy with filamentous growth, and similar traits are also manifested in the Pseudofungi (oomycetes and hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a diversity of plant and animal parasites. Genome-sequencing efforts have focused on host-associated microbes (mutualistic symbionts or parasites), providing limited comparisons with free-living relatives. Here we report the first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hyphochytrium catenoides. Using phylogenomic approaches, we identify genes of recent viral ancestry, with related viral derived genes also present on the genomes of oomycetes, suggesting a complex history of viral coevolution and integration across the Pseudofungi. H. catenoides has a complex life cycle involving diverse filamentous structures and a flagellated zoospore with a single anterior tinselate flagellum. We use genome comparisons, drug sensitivity analysis and high-throughput culture arrays to investigate the ancestry of oomycete/pseudofungal characteristics, demonstrating that many of the genetic features associated with parasitic traits evolved specifically within the oomycete radiation. Comparative genomics also identified differences in the repertoire of genes associated with filamentous growth between the Fungi and the Pseudofungi, including differences in vesicle trafficking systems, cell-wall synthesis pathways and motor protein repertoire, demonstrating that unique cellular systems underpinned the convergent evolution of filamentous osmotrophic growth in these two eukaryotic groups

    L'origen de la multicel·lularitat a metazous, una aproximació genòmica i funcional / The origin of metazoan multicellularity, a genomics and functional approach

    Get PDF
    [spa] El origen de la multicelularidad animal es una de las mayores transiciones evolutivas de la historia de la vida. La secuenciación, en los últimos años, de genomas de animales basales como esponjas y cnidarios ha permitido establecer la maquinaria genética común a todos los animales. La mayoría de estos genes son aquellos involucrados en la adhesión celular, la comunicación celular y el control de la proliferación y la diferenciación. El acceso a datos genómicos de organismos unicelulares muy cercanos a los animales, como Capsaspora owczarzaki, es esencial para entender mejor esta transición. Los objetivos principales de esta tesis ha sido estudiar la presencia de genes de multicelularidad y su conservación funcional en Capsaspora owczarzaki, así como su ciclo vital. Analizando su genoma, descubrimos una completa maquinaria de adhesión por integrinas en C.owczarzaki. Hemos podido reconstruir en detalle la historia evolutiva de este mecanismo crucial de adhesión y comunicación celular. También hemos encontrado un amplio repertorio de factores de transcripción, elementos esenciales para regular la diferenciación y la proliferación en los animales, que se creían exclusivos de animales en el genoma de C.owczarzaki; por ejemplo, genes NFkappaB, T-box o p53. Por último, hemos descrito que una importante vía de señalización en animales, la llamada vía Hippo, también está presente en C.owczarzaki. Este mecanismo es esencial para controlar la proliferación y el tamaño de los órganos en los animales. Mediante estudios de función heteróloga en Xenopus y Drosophila demostramos la conservación funcional de los homólogos del gen Brachyury (un factor de transcripción de la clase T-box) y de la vía Hippo de C.owczarzaki. C.owczarzaki y el coanoflagelado Salpingoeca rosetta nos sirvieron para estudiar la evolución y el origen de los filopodios y microvilli animales y su maquinaria molecular. Por último, el estudio de la biología y el ciclo de C.owczarzaki, mediante el uso de técnicas microscopias, citometría y transcriptómica comparada de los distintos estadios vitales del organismo. Demostramos la existencia de un estadio de pluricelularidad agregativa y que la transición entre éste y otros estadios está finamente regulada a nivel de expresión génica y de splicing alternativo. El estudio de C.owczarzaki nos ha dado valiosos ejemplos de cómo, más allá de la innovación génica, la co-opción de maquinaria pre-existente en un contexto unicelular fue un mecanismo esencial para el origen de la multicelularidad animal.[eng] The origin of animal multicellularity is a major evolutionary transition and a poorly understood one. In recent years, the sequencing of the genomes of several earlybranching metazoans, such as sponges and cnidarians, has allowed to define a common and exclusive molecular toolkit of animal multicellularity. Most of these genes are involved in cell adhesion, cell-cell communication and control of cell proliferation and differentiation, all of them essential functions for a multicellular organism. The access to genomic data of close unicellular relatives of animals, such as the choanoflagellates, has revolutionized the comparative genomic studies to understand the origin of animals and the molecular toolkit of the Urmetazoa (the common ancestor of all animals), showing that some genes that were considered exclusive to animals are, in fact, present in their unicellular relatives and were later co-opted to function in a multicellular context. The sequencing of the genome of the unicellular holozoan Capsaspora owczarzaki offers a new opportunity for further studying this topic. Thus, the main objectives of this thesis have been: first, to perform comparative genomic studies to reconstruct the evolutionary history of animal molecular toolkit; second, to study the functional conservation of some of the genes identified in Capsaspora owczarzaki by performing heterologous expression in model systems such as Xenopus laevis and Drosophila melanogaster; and finally, to study the life cycle and cell biology of Capsaspora owczarzaki to further understand the unicellular functional context in which this genetic toolkit of the multicellularity can act and may have evolved first. One of the main results of our comparative genomic studies is the presence of a complete integrin adhesome in Capsaspora owczarzaki and an almost full adhesome (including integrins) in the more distantly related Thecamonas trahens. This results allowed us to reconstruct the step-wise evolutionary assembly of this key machinery of animal multicellularity. Another important result is the finding of several transcription factors (essential tools for regulating cell differentiation and cell proliferation in animals) in Capsaspora owczarzaki previously considered exclusive to animals, for example NFkappaB, Myc/Max, Mef2, T-box, Runx,... Finally, we found in Capsaspora owczarzaki homologs of the components of the Hippo signalling pathway, an essential mechanism controlling cell proliferation and organ size in animals. Through heterologous expression studies we could study in detail the functional conservation of two of these machineries discovered in Capsaspora owczarzaki by comparative genomic studies. First, we studied the Capsaspora owczarzaki homolog of Brachyury (CoBra) using Xenopus laevis, the classical model system for studying Brachyury function. Brachyury is a T-box transcription factor involved in gastrulation and mesoderm specification in metazoans. We demonstrated that CoBra is functionally conserved and that it has similar DNA binding sites to those of animal T-box genes. Second, we used Drosophila melanogaster to demonstrate the functional conservation of three components of Capsaspora owczarzaki's Hippo pathway. One the most striking morphological features of Capsaspora owczarzaki is the presence of long filopodia. Using this organism and the choanoflagellate Salpingoeca rosetta we studied the origin and evolution of metazoan filopodia and microvilli and the associated molecular toolkit. We found that most components are innovations of animals and these two close unicellular lineages and that the microvilli originated in the common ancestor of animals and choanoflagellates. Finally, we studied the life cycle of Capsaspora owczarzaki using microscopy, flow cytometry and comparative transcriptomics of different life stages. We demonstrated the existence of an aggregative pluricellular stage in Capsaspora owczarzaki and that the transition between this and other stages is tightly regulated at the level of gene expression and alternative splicing. We also found evidence that the integrin adhesome is expressed in the aggregative stage, we an extracellular matrix is produced between the cells. The study of Capsaspora owczarzaki has provided valuable insights into the origin of animal multicellularity and emphasizes the fact that gene co-option was a major mechanism to generate to multicellular molecular toolkit of animals

    Origen de la multicel·lularitat : una aproximació genòmica i funcional

    No full text
    En el present estudi s'analitza l'origen i evolució de 2 molècules claus pera entendre la multicel·lularitat dels animals: les molècules d'adhesió integrines i els factors de transcripció T-box. S’utilitzen els genomes recentment publicats de protists unicel•lulars parents propers dels animals. S’analitza l’origen i evolució d’aquests gens mitjançant anàlisi filogènic, determinació de motius funcionals i també tècniques de biologia molecular. A més, es documenta un cas de transferència gènica horitzontal des d'un eucariota cap a un procariota, fenomen poc habitual. Les principals conclusions són que tant l’adhesoma d'integrina com els gens T-box tenen un origen molt anterior als animals, en un context unicel•lular, i que després foren cooptats pel llinatge multicel•lular dels animals.In this study we analyze the origin and evolution of two key molecules to understand the animal multicellularity: adhesion molecules integrins and T-box transcription factors. We use the recently published genomes of differents unicellular protists, close relatives of metazoans. We analyze the origin and evolution of these genes using phylogenetic analysis, functional motifs analysis and also molecular biology techniques. Furthermore, we describe a rare case of lateral gene transfer from an eukaryote lo a prokaryote. The main conclusions of the study are that integrin adhesome and T-box genes predate the origin of metazoans, in a next of unicellularity. Later, they were co-opter in the multicellular lineage of metazoans

    Evolutionary cell type mapping with single-cell genomics

    No full text
    Data de publicació electrònica: 18-05-2021A fundamental characteristic of animal multicellularity is the spatial coexistence of functionally specialized cell types that are all encoded by a single genome sequence. Cell type transcriptional programs are deployed and maintained by regulatory mechanisms that control the asymmetric, differential access to genomic information in each cell. This genome regulation ultimately results in specific cellular phenotypes. However, the emergence, diversity, and evolutionary dynamics of animal cell types remain almost completely unexplored beyond a few species. Single-cell genomics is emerging as a powerful tool to build comprehensive catalogs of cell types and their associated gene regulatory programs in non-traditional model species. We review the current state of sampling efforts across the animal tree of life and challenges ahead for the comparative study of cell type programs. We also discuss how the phylogenetic integration of cell atlases can lead to the development of models of cell type evolution and a phylogenetic taxonomy of cells

    Orthology clusters from gene trees with possvm

    No full text
    Possvm (Phylogenetic Ortholog Sorting with Species oVerlap and MCL [Markov clustering algorithm]) is a tool that automates the process of identifying clusters of orthologous genes from precomputed phylogenetic trees and classifying gene families. It identifies orthology relationships between genes using the species overlap algorithm to infer taxonomic information from the gene tree topology, and then uses the MCL to identify orthology clusters and provide annotated gene families. Our benchmarking shows that this approach, when provided with accurate phylogenies, is able to identify manually curated orthogroups with very high precision and recall. Overall, Possvm automates the routine process of gene tree inspection and annotation in a highly interpretable manner, and provides reusable outputs and phylogeny-aware gene annotations that can be used to inform comparative genomics and gene family evolution analyses.Research in A.S.-P. group was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme Grant Agreement (851647), the Spanish Ministry of Science and Innovation (PGC2018-098210-A-I00), the Centro de Excelencia Severo Ochoa scheme (SEV-2016-0571), and the Agencia Estatal de Investigación. X.G.-B. was supported by a Juan de la Cierva fellowship (FJC2018-036282-I) from the Spanish Ministry of Economy, Industry, and Competitiveness
    • …
    corecore