31 research outputs found

    The Welfare of Cattle kept for Beef Production

    Get PDF
    Content: 1) Introduction 2) State of the Industry 3) Hosing Systems 4) Behaviour of Cattle 5)Effect of Housing on the Welfare of the Animals 6) the effects of Management on Cattle Welfare 7)Futere Research Needed 8) Conclusions 9) Recommodations 10) References 11) Acknowledgement

    Aquatic food security:insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment

    Get PDF
    Fisheries and aquaculture production, imports, exports and equitability of distribution determine the supply of aquatic food to people. Aquatic food security is achieved when a food supply is sufficient, safe, sustainable, shockproof and sound: sufficient, to meet needs and preferences of people; safe, to provide nutritional benefit while posing minimal health risks; sustainable, to provide food now and for future generations; shock-proof, to provide resilience to shocks in production systems and supply chains; and sound, to meet legal and ethical standards for welfare of animals, people and environment. Here, we present an integrated assessment of these elements of the aquatic food system in the United Kingdom, a system linked to dynamic global networks of producers, processors and markets. Our assessment addresses sufficiency of supply from aquaculture, fisheries and trade; safety of supply given biological, chemical and radiation hazards; social, economic and environmental sustainability of production systems and supply chains; system resilience to social, economic and environmental shocks; welfare of fish, people and environment; and the authenticity of food. Conventionally, these aspects of the food system are not assessed collectively, so information supporting our assessment is widely dispersed. Our assessment reveals trade-offs and challenges in the food system that are easily overlooked in sectoral analyses of fisheries, aquaculture, health, medicine, human and fish welfare, safety and environment. We highlight potential benefits of an integrated, systematic and ongoing process to assess security of the aquatic food system and to predict impacts of social, economic and environmental change on food supply and demand

    Scientific Opinion on the public health hazards to be covered by inspection of meat from farmed game

    Get PDF
    Salmonella spp. in farmed wild boar and Toxoplasma gondii in farmed deer and farmed wild boar were ranked as a high priority for meat inspection. Trichinella spp. in wild boar was ranked as low priority due to current controls, which should be continued. For chemical hazards, all substances were ranked as medium or lower potential concern. More effective control of biological hazards could be achieved using an integrated farm to chilled carcass approach, including improved food chain information (FCI) and risk-based controls. Further studies are required on Salmonella spp. in farmed wild boar and T. gondii in farmed wild boar and farmed deer. If new information confirms a high risk to public health from meat from these species, setting targets at carcass level should be considered. Palpation and incision should be omitted, as it will not detect biological hazards considered to be a high priority for meat inspection while increasing the potential spread and cross-contamination of the carcasses with Salmonella. Palpation and/or incision may be applied where abnormalities have been detected but away from the slaughter line. However the elimination of routine palpation and incision would be detrimental for detecting tuberculosis. As farmed deer and farmed wild boar can act as tuberculosis reservoirs, any reduction in the detection, due to changes in the post-mortem inspection procedures, will have consequences for the overall surveillance of tuberculosis. Monitoring programmes for chemical hazards should be more flexible and based on the risk of occurrence, taking into account FCI, which should be expanded to reflect the specific environmental conditions of the farms where the animals are reared, and the ranking of chemical substances, which should be regularly updated and include new hazards. Control programmes across the food chain, national residue control programmes, feed control and monitoring of environmental contaminants should be better integrated

    Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species

    No full text
    Bacterial populations can display high levels of genetic structuring but the forces that influence this are incompletely understood. Here, by combining modelling approaches with multilocus sequence data for the zoonotic pathogen Campylobacter, we investigated how ecological factors such as niche (host) separation relate to population structure. We analysed seven housekeeping genes from published C. jejuni and C. coli isolate collections from a range of food and wild animal sources as well as abiotic environments. By reconstructing genetic structure and the patterns of ancestry, we quantified C. jejuni host association, inferred ancestral populations, investigated genetic admixture in different hosts and determined the host origin of recombinant C. jejuni alleles found in hybrid C. coli lineages. Phylogenetically distinct C. jejuni lineages were associated with phylogenetically distinct wild birds. However, in the farm environment, phylogenetically distant host animals shared several C. jejuni lineages that could not be segregated according to host origin using these analyses. Furthermore, of the introgressed C. jejuni alleles found in C. coli lineages, 73% were attributed to genotypes associated with food animals. Our results are consistent with an evolutionary scenario where distinct Campylobacter lineages are associated with different host species but the ecological factors that maintain this are different in domestic animals such that phylogenetically distant animals can harbour closely related strains
    corecore