17 research outputs found

    S-ketamine’s effect changes the cortical electrophysiological activity related to semantic affective dimension of pain : a placebo- controlled study in healthy male individuals

    Get PDF
    Background: Previous studies using the electroencephalogram (EEG) technique pointed out that ketamine decreases the amplitude of cortical electrophysiological signal during cognitive tasks, although its effects on the perception and emotional-valence judgment of stimuli are still unknown. Objective: We evaluated the effect of S-ketamine on affective dimension of pain using EEG and behavioral measures. The hypothesis was that S-ketamine would be more effective than placebo, both within and between groups, to attenuate the EEG signal elicited by target and non-target words. Methods: This double-blind parallel placebo-controlled study enrolled 24 healthy male volunteers between 19 and 40 years old. They were randomized to receive intravenous S-ketamine (n = 12) at a plasmatic concentration of 60 ng/ml or placebo (n = 12). Participants completed a computerized oddball paradigm containing written words semantically related to pain (targets), and non-pain related words (standard). The volunteers had to classify the words either as “positive,” “negative” or “neutral” (emotional valence judgment). The paradigm consisted in 6 blocks of 50 words each with a fixed 4:1 target/non-target rate presented in a single run. Infusion started during the interval between the 3rd and 4th blocks, for both groups. EEG signal was registered using four channels (Fz, Pz, Pz, and Oz, according to the 10–20 EEG system) with a linked-earlobe reference. The area under the curve (AUC) of the N200 (interval of 100–200 ms) and P300 (300–500 ms) components of event-related potentials (ERPs) was measured for each channel. Results: S-ketamine produced substantial difference (delta) in the AUC of grand average ERP components N200 (P = 0.05) and P300 (P = 0.02) at Pz during infusion period when compared to placebo infusion for both targets and non-targets. S-ketamine was also associated with a decrease in the amount of pain-related words judged as negative from before to after infusion [mean = 0.83 (SD = 0.09) vs. mean = 0.73 (SD = 0.11), respectively; P = 0.04]. Conclusion: Our findings suggest that S-ketamine actively changed the semantic processing of written words. There was an increase in electrophysiological response for pain-related stimuli and a decrease for standard stimuli, as evidenced by the increased delta of AUCs. Behaviorally, S-ketamine seems to have produced an emotional and discrimination blunting effect for pain-related words

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Effects of Subanesthetic Ketamine Administration on Visual and Auditory Event-Related Potentials (ERP) in Humans: A Systematic Review

    No full text
    Ketamine is a non-competitive N-Methyl-D-Aspartate (NMDA) receptor antagonist whose effect in subanesthetic doses has been studied for chronic pain and mood disorders treatment. It has been proposed that ketamine could change the perception of nociceptive stimuli by modulating the cortical connectivity and altering the top-down mechanisms that control conscious pain perception. As this is a strictly central effect, it would be relevant to provide fresh insight into ketamine's effect on cortical response to external stimuli. Event-related potentials (ERPs) reflect the combined synchronic activity of postsynaptic potentials of many cortical pyramidal neurons similarly oriented, being a well-established technique to study cortical responses to sensory input. Therefore, the aim of this study was to examine the current evidence of subanesthetic ketamine doses on patterns of cortical activity based on ERPs in healthy subjects. To answer the question whether ERPs could be potential markers of the cortical effects of ketamine, we conducted a systematic review of ketamine's effect on ERPs after single and repeated doses. We have searched PubMed, EMBASE and Cochrane Databases and pre-selected 141 articles, 18 of which met the inclusion criteria. Our findings suggest that after ketamine administration some ERP parameters are reduced (reduced N2, P2, and P3 amplitudes, PN and MMN) while others remain stable or are even increased (P50 reduction, PPI, P1, and N1 amplitudes). The current understanding of these effects is that ketamine alters the perceived contrast between distinct visual and auditory stimuli. The analgesic effect of ketamine might also be influenced by a decreased affective discrimination of sensorial information, a finding from studies using ketamine as a model for schizophrenia, but that can give an important hint not only for the treatment of mood disorders, but also to treat pain and ketamine abuse
    corecore