213 research outputs found

    Adjuvant therapy after resection of colorectal liver metastases: the predictive value of the MSKCC clinical risk score in the era of modern chemotherapy

    Get PDF
    Background: Despite introduction of effective chemotherapy protocols, it has remained uncertain, if patients with colorectal cancer (CRC) liver metastases should receive adjuvant therapy. Clinical or molecular predictors may help to select patients at high risk for disease recurrence and death who obtain a survival advantage by adjuvant chemotherapy. Methods: A total of 297 patients with potentially curative resection of CRC liver metastases were analyzed. These patients had no neoadjuvant therapy, no extrahepatic disease and negative resection margins. The primary endpoint was overall survival. Patients’ risk status was evaluated using the Memorial Sloan-Kettering Cancer Center clinical risk score (MSKCC-CRS). Multivariable analyses were performed using Cox proportional hazard models. Results: A total of 137 (43%) patients had a MSKCC-CRS > 2. Adjuvant chemotherapy was administered to 116 (37%) patients. Patients who received adjuvant chemotherapy were of younger age (p = 0.03) with no significant difference in the presence of multiple metastases (p = 0.72) or bilobar metastases (p = 0.08). On multivariate analysis adjuvant chemotherapy was associated with improved survival in the entire cohort (Hazard ratio 0.69; 95% confidence interval 0.69–0.98). It improved survival markedly in high-risk patients with a MSKCC-CRS > 2 (HR 0.40; 95% CI 0.23–0.69), whereas it was of no benefit in patients with a MSKCC-CRS ≤ 2 (HR 0.90; 95% CI 0.57–1.43). Conclusions: The MSKCC-CRS offers a tool to select patients for adjuvant therapy after resection of CRC liver metastases. Validation in independent patient cohorts is required

    Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling

    Get PDF
    Background: Colorectal cancer is the third most common malignancy in humans and novel therapeutic approaches are urgently needed. Autophagy is an evolutionarily highly conserved cellular process by which cells collect unnecessary organelles or misfolded proteins and subsequently degrade them in vesicular structures in order to refuel cells with energy. Dysregulation of the complex autophagy signaling network has been shown to contribute to the onset and progression of cancer in various models. The Bcl-2 family of proteins comprises central regulators of apoptosis signaling and has been linked to processes involved in autophagy. The antiapoptotic members of the Bcl-2 family of proteins have been identified as promising anticancer drug targets and small molecules inhibiting those proteins are in clinical trials. Methods: Flow cytometry and colorimetric assays were used to assess cell growth and cell death. Long term 3D cell culture was used to assess autophagy in a tissue mimicking environment in vitro. RNA interference was applied to modulate autophagy signaling. Immunoblotting and q-RT PCR were used to investigate autophagy signaling. Immunohistochemistry and fluorescence microscopy were used to detect autophagosome formation and autophagy flux. Results: This study demonstrates that autophagy inhibition by obatoclax induces cell death in colorectal cancer (CRC) cells in an autophagy prone environment. Here, we demonstrate that pan-Bcl-2 inhibition by obatoclax causes a striking, late stage inhibition of autophagy in CRC cells. In contrast, ABT-737, a Mcl-1 sparing Bcl-2 inhibitor, failed to interfere with autophagy signaling. Accumulation of p62 as well as Light Chain 3 (LC3) was observed in cells treated with obatoclax. Autophagy inhibition caused by obatoclax is further augmented in stressful conditions such as starvation. Furthermore, our data demonstrate that inhibition of autophagy caused by obatoclax is independent of the essential pro-autophagy proteins Beclin-1, Atg7 and Atg12. Conclusions: The objective of this study was to dissect the contribution of Bcl-2 proteins to autophagy in CRC cells and to explore the potential of Bcl-2 inhibitors for autophagy modulation. Collectively, our data argue for a Beclin-1 independent autophagy inhibition by obatoclax. Based on this study, we recommend the concept of autophagy inhibition as therapeutic strategy for CRC

    Low levels of Caspase-3 predict favourable response to 5FU-based chemotherapy in advanced colorectal cancer: Caspase-3 inhibition as a therapeutic approach.

    Get PDF
    Colorectal cancer (CRC) is one of the most common cancers in the Western world. 5-Fluorouracil (5FU)-based chemotherapy (CT) remains the mainstay treatment of CRC in the advanced setting, and activates executioner caspases in target cells. Executioner caspases are key proteins involved in cell disassembly during apoptosis. Activation of executioner caspases also has a role in tissue regeneration and repopulation by stimulating signal transduction and cell proliferation in neighbouring, non-apoptotic cells as reported recently. Tissue microarrays (TMAs) consisting of tumour tissue from 93 stage II and III colon cancer patients were analysed by immunohistochemistry. Surprisingly, patients with low levels of active Caspase-3 had an increased disease-free survival time. This was particularly pronounced in patients who received 5FU-based adjuvant CT. In line with this observation, lower serum levels of active Caspase-3 were found in patients with metastasised CRC who revealed stable disease or tumour regression compared with those with disease progression. The role of Caspase-3 in treatment responses was explored further in primary human tumour explant cultures from fresh patient tumour tissue. Exposure of explant cultures to 5FU-based CT increased the percentage of cells positive for active Caspase-3 and Terminal Deoxynucleotidyl Transferase dUTP Nick end Labelling (TUNEL), but also the expression of regeneration and proliferation markers β-Catenin and Ki-67, as well as cyclooxygenase-2 (COX-2). Of note, selective inhibition of Caspase-3 with Ac-DNLD-CHO, a selective, reversible inhibitor of Caspase-3, significantly reduced the expression of proliferation markers as well as COX-2. Inhibition of COX-2 with aspirin or celecoxib did not affect Caspase-3 levels but also reduced Ki-67 and β-Catenin levels, suggesting that Caspase-3 acted via COX-2 to stimulate cell proliferation and tissue regeneration. This indicates that low levels of active Caspase-3 may represent a new predictor of CT responsiveness, and inhibition of Caspase-3, or antagonising downstream effectors of Caspase-3 paracrine signalling, such as COX-2 may improve patient outcomes following CT in advanced CRC

    Wogonin and related natural flavones are inhibitors of CDK9 that induce apoptosis in cancer cells by transcriptional suppression of Mcl-1

    Get PDF
    The wogonin-containing herb Scutellaria baicalensis has successfully been used for curing various diseases in traditional Chinese medicine. Wogonin has been shown to induce apoptosis in different cancer cells and to suppress growth of human cancer xenografts in vivo. However, its direct targets remain unknown. In this study, we demonstrate for the first time that wogonin and structurally related natural flavones, for example, apigenin, chrysin and luteolin, are inhibitors of cyclin-dependent kinase 9 (CDK9) and block phosphorylation of the carboxy-terminal domain of RNA polymerase II at Ser2. This effect leads to reduced RNA synthesis and subsequently rapid downregulation of the short-lived anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) resulting in apoptosis induction in cancer cells. We show that genetic inhibition of Mcl-1 or CDK9 expression by siRNA is sufficient to mimic flavone-induced apoptosis. Pull-down and in silico docking studies demonstrate that wogonin directly binds to CDK9, presumably to the ATP-binding pocket. In contrast, wogonin does not inhibit CDK2, CDK4 and CDK6 at doses that inhibit CDK9 activity. Furthermore, we show that wogonin preferentially inhibits CDK9 in malignant compared with normal lymphocytes. Thus, our study reveals a new mechanism of anti-cancer action of natural flavones and supports CDK9 as a therapeutic target in oncology

    Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction

    Get PDF
    BACKGROUND: Hepatocelluar carcinoma (HCC) is one of the most common cancers worldwide and a major cause of cancer-related mortality. HCC is highly resistant to currently available chemotherapeutic drugs. Defects in apoptosis signaling contribute to this resistance. Myeloid cell leukemia-1 (Mcl-1) is an anti-apoptotic member of the Bcl-2 protein family which interferes with mitochondrial activation. In a previous study we have shown that Mcl-1 is highly expressed in tissues of human HCC. In this study, we manipulated expression of the Mcl-1 protein in HCC cells by RNA interference and analyzed its impact on apoptosis sensitivity of HCC cells in vitro. METHODS: RNA interference was performed by transfecting siRNA to specifically knock down Mcl-1 expression in HCC cells. Mcl-1 expression was measured by quantitative real-time PCR and Western blot. Induction of apoptosis and caspase activity after treatment with chemotherapeutic drugs and different targeted therapies were measured by flow cytometry and fluorometric analysis, respectively. RESULTS: Here we demonstrate that Mcl-1 expressing HCC cell lines show low sensitivity towards treatment with a panel of chemotherapeutic drugs. However, treatment with the anthracycline derivative epirubicin resulted in comparatively high apoptosis rates in HCC cells. Inhibition of the kinase PI3K significantly increased apoptosis induction by chemotherapy. RNA interference efficiently downregulated Mcl-1 expression in HCC cells. Mcl-1 downregulation sensitized HCC cells to different chemotherapeutic agents. Sensitization was accompanied by profound activation of caspase-3 and -9. In addition, Mcl-1 downregulation also increased apoptosis rates after treatment with PI3K inhibitors and, to a lower extent, after treatment with mTOR, Raf I and VEGF/PDGF kinase inhibitors. TRAIL-induced apoptosis did not markedly respond to Mcl-1 knockdown. Additionally, knockdown of Mcl-1 efficiently enhanced apoptosis sensitivity towards combined treatment modalities: Mcl-1 knockdown significantly augmented apoptosis sensitivity of HCC cells towards chemotherapy combined with PI3K inhibition. CONCLUSION: Our data suggest that specific downregulation of Mcl-1 by RNA interference is a promising approach to sensitize HCC cells towards chemotherapy and molecularly targeted therapies

    Development of Mouse Hepatocyte Lines Permissive for Hepatitis C Virus (HCV)

    Get PDF
    The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications

    Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the BH3-only proteins Bim and Bid

    Get PDF
    Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells

    Safety and pharmacokinetics of recombinant human hepatocyte growth factor (rh-HGF) in patients with fulminant hepatitis: a phase I/II clinical trial, following preclinical studies to ensure safety

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte growth factor (HGF) stimulates hepatocyte proliferation, and also acts as an anti-apoptotic factor. Therefore, HGF is a potential therapeutic agent for treatment of fatal liver diseases. We performed a translational medicine protocol with recombinant human HGF (rh-HGF), including a phase I/II study of patients with fulminant hepatitis (FH) or late-onset hepatic failure (LOHF), in order to examine the safety, pharmacokinetics, and clinical efficacy of this molecule.</p> <p>Methods</p> <p>Potential adverse effects identified through preclinical safety tests with rh-HGF include a decrease in blood pressure (BP) and an increase in urinary excretion of albumin. Therefore, we further investigated the effect of rh-HGF on circulatory status and renal toxicity in preclinical animal studies. In a clinical trial, 20 patients with FH or LOHF were evaluated for participation in this clinical trial, and four patients were enrolled. Subjects received rh-HGF (0.6 mg/m<sup>2</sup>/day) intravenously for 12 to 14 days.</p> <p>Results</p> <p>We established an infusion method to avoid rapid BP reduction in miniature swine, and confirmed reversibility of renal toxicity in rats. Although administration of rh-HGF moderately decreased BP in the participating subjects, this BP reduction did not require cessation of rh-HGF or any vasopressor therapy; BP returned to resting levels after the completion of rh-HGF infusion. Repeated doses of rh-HGF did not induce renal toxicity, and severe adverse events were not observed. Two patients survived, however, there was no evidence that rh-HGF was effective for the treatment of FH or LOHF.</p> <p>Conclusions</p> <p>Intravenous rh-HGF at a dose of 0.6 mg/m<sup>2 </sup>was well tolerated in patients with FH or LOHF; therefore, it is desirable to conduct further investigations to determine the efficacy of rh-HGF at an increased dose.</p

    Stem Cell-Based Neuroprotective and Neurorestorative Strategies

    Get PDF
    Stem cells, a special subset of cells derived from embryo or adult tissues, are known to present the characteristics of self-renewal, multiple lineages of differentiation, high plastic capability, and long-term maintenance. Recent reports have further suggested that neural stem cells (NSCs) derived from the adult hippocampal and subventricular regions possess the utilizing potential to develop the transplantation strategies and to screen the candidate agents for neurogenesis, neuroprotection, and neuroplasticity in neurodegenerative diseases. In this article, we review the roles of NSCs and other stem cells in neuroprotective and neurorestorative therapies for neurological and psychiatric diseases. We show the evidences that NSCs play the key roles involved in the pathogenesis of several neurodegenerative disorders, including depression, stroke and Parkinson’s disease. Moreover, the potential and possible utilities of induced pluripotent stem cells (iPS), reprogramming from adult fibroblasts with ectopic expression of four embryonic genes, are also reviewed and further discussed. An understanding of the biophysiology of stem cells could help us elucidate the pathogenicity and develop new treatments for neurodegenerative disorders. In contrast to cell transplantation therapies, the application of stem cells can further provide a platform for drug discovery and small molecular testing, including Chinese herbal medicines. In addition, the high-throughput stem cell-based systems can be used to elucidate the mechanisms of neuroprotective candidates in translation medical research for neurodegenerative diseases
    corecore