84 research outputs found

    Secure Integration of Desktop Grids and Compute Clusters Based on Virtualization and Meta-Scheduling

    Get PDF
    Reducing the cost for business or scientific computations, is a commonly expressed goal in today’s companies. Using the available computers of local employees or the outsourcing of such computations are two obvious solutions to save money for additional hardware. Both possibilities exhibit security related disadvantages, since the deployed software and data can be copied or tampered if appropriate countermeasures are not taken. In this paper, an approach is presented to let a local desktop machines and remote cluster resources be securely combined into a singel Grid environment. Solutions to several problems in the areas of secure virtual networks, meta-scheduling and accessing cluster schedulers from desktop Grids are proposed

    Expression and characterisation of αvβ5 integrin on intestinal macrophages

    Get PDF
    Macrophages play a crucial role in maintaining homeostasis in the intestine, but the underlying mechanisms have not yet been elucidated fully. Here we show for the first time that mature intestinal macrophages in mouse colon and small intestine express high levels of αvβ5 integrin, which acts as a receptor for the uptake of apoptotic cells and can activate molecules involved in several aspects of tissue homeostasis such as angiogenesis and remodelling of the extracellular matrix. αvβ5 is not expressed by other immune cells in the intestine, is already present on intestinal macrophages soon after birth, and its expression is not dependent on the microbiota. In adults, αvβ5 induces the differentiation of monocytes in response to the local environment and it confers intestinal macrophages with the ability to promote engulfment of apoptotic cells via engagement of the bridging molecule milk fat globule EGF‐like molecule 8. In the absence of αvβ5, there are fewer monocytes in the mucosa and mature intestinal macrophages have decreased expression of metalloproteases and interleukin 10. Mice lacking αvβ5 on haematopoietic cells show increased susceptibility to chemical colitis and we conclude that αvβ5 contributes to the tissue repair by regulating the homeostatic properties of intestinal macrophages

    Supporting Engineering Processes Utilizing Service-Oriented Grid Technology

    Get PDF
    Speeding up knowledge-intensive core processes in engineering and increas-ing the quality of their results is becoming more and more decisive, since economic pressure from national and international competitors and customers is rising. In particular, these demands exceed the organizational and infrastructural capacities of small and medium-sized enterprises (SME) by far. Hence, combining complementary core competencies across organizational boundaries is crucial for an enterprise's continuing success. Efficient and economically reasonable support of knowledge-intensive core processes in virtual organisations is therefore a predominant requirement for future IT infrastructures. The paradigm shift to service-orientation in Grid middleware opens the possibility to provide such support along the product lifecycle by employing a flexible software development approach, namely to compose applications from standard components, promising easier development and modification of Grid applications. In this paper, a service-oriented Grid computing approach is presented which aims at supporting distributed business processes in industry (see section 2 for industrial scenarios) from top level modelling, workflow design and exe-cution to actual Grid service code (presented in section 3). Parts of this gap between processes and code can be bridged by semi-automatically generated Grid service code. Orchestration of these Grid services is also automated by using a Grid-enabled workflow engine (see section 3). The feasibility of the proposed approach is demonstrated by presenting an exemplary process chain from the casting industry (see full paper)

    Global signal modulation of single-trial fMRI response variability: effect on positive vs negative BOLD response relationship

    Get PDF
    In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and inhibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering visual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experiments. In contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Subsequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We demonstrate that the global component of this single-trial response modulation could be fully explained by voxel-wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average responses

    Barrier Tissue Macrophages: Functional Adaptation to Environmental Challenges

    Get PDF
    Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation

    Tissue-specific differentiation of colonic macrophages requires TGFβ receptor-mediated signaling

    Get PDF
    Intestinal macrophages (mφ) form one of the largest populations of mφ in the body and are vital for the maintenance of gut homeostasis. They have several unique properties and are derived from local differentiation of classical Ly6Chi monocytes, but the factors driving this tissue-specific process are not understood. Here we have used global transcriptomic analysis to identify a unique homeostatic signature of mature colonic mφ that is acquired as they differentiate in the mucosa. By comparing the analogous monocyte differentiation process found in the dermis, we identify TGFβ as an indispensable part of monocyte differentiation in the intestine and show that it enables mφ to adapt precisely to the requirements of their environment. Importantly, TGFβR signaling on mφ has a crucial role in regulating the accumulation of monocytes in the mucosa, via mechanisms that are distinct from those used by IL10

    Deletion of a Csf1r enhancer selectively impacts CSF1R expression and development of tissue macrophage populations.

    Get PDF
    The proliferation, differentiation and survival of mononuclear phagocytes depend on signals from the receptor for macrophage colony-stimulating factor, CSF1R. The mammalian Csf1r locus contains a highly conserved super-enhancer, the fms-intronic regulatory element (FIRE). Here we show that genomic deletion of FIRE in mice selectively impacts CSF1R expression and tissue macrophage development in specific tissues. Deletion of FIRE ablates macrophage development from murine embryonic stem cells. Csf1r mice lack macrophages in the embryo, brain microglia and resident macrophages in the skin, kidney, heart and peritoneum. The homeostasis of other macrophage populations and monocytes is unaffected, but monocytes and their progenitors in bone marrow lack surface CSF1R. Finally, Csf1r mice are healthy and fertile without the growth, neurological or developmental abnormalities reported in Csf1r rodents. Csf1r mice thus provide a model to explore the homeostatic, physiological and immunological functions of tissue-specific macrophage populations in adult animals

    Optimising Security Configurations with Service Level Agreements

    No full text
    Abstract. Security and data integrity are important aspects in the fields of Grid and cluster computing. However, security usually incurs a certain amount of performance degradation and adds usage complexity to a field of computing where performance is crucial and usage complexity is already high. The growing popularity of Grid computing is leading to vastly different security requirements. While some Grid security mechanisms are already configurable, many others such as firewalls and advanced sandboxing techniques are usually configured statically per site according to particular user community needs. In this paper, we present a WS-Agreement approach for a fine grained security configuration mechanism to allow an optimization of application performance based on specific security requirements. The approach is demonstrated using an industrial optimization application from the area of metal casting
    corecore