98 research outputs found

    Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor <it>c-myc </it>regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific <it>c-myc </it>knockout mouse, <it>c-myc<sup>fl/fl</sup></it>;<it>Alb</it>-<it>Cre</it>.</p> <p>Results</p> <p>Liver weight to body weight ratios were similar in control and <it>c-myc </it>deficient mice. Liver architecture was unaffected. Conditional <it>c-myc </it>deletion did not result in compensatory induction of other <it>myc </it>family members or in c-Myc's binding partner Max. Floxed <it>c-myc </it>did have a negative effect on <it>Alb</it>-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the <it>c-myc </it>floxed mice. No significant difference in Alb-Cre activity was found between control and <it>c-myc<sup>fl/fl </sup></it>mice. c<it>-myc </it>deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c<it>-myc<sup>fl/fl</sup>;Alb</it>-Cre animals. There was also no effect of reducing <it>c-myc </it>on recovery of liver mass following 2/3 partial hepatectomy.</p> <p>Conclusions</p> <p>c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.</p

    Mechanical stretch regulates the expression of specific miRNA in extracellular vesicles released from lung epithelial cells

    Get PDF
    Acknowledgments This work was supported from the National Institute of Health (NIGMS grant Number P30GM114750 & P30GM103410, NCRR grant Numbers P30RR031153, P20RR018728 & S10RR02763); National Science Foundation (EPSCoR grant No 0554548); Oh–Zopfi for Perinatal Research Award, Women & Infants Hospital of Rhode Island. We thank Brenda Vecchio for her support in manuscript formatting and Quanfu Mao for his support to use the instruments.Peer reviewedPostprin

    Case report of MR perfusion imaging in Sinking Skin Flap Syndrome: growing evidence for hemodynamic impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The syndrome of the sinking skin flap (SSSF) with delayed sensorimotor deficits after craniectomy is not well known and often neglected. Among various postulated causes, there is evidence that disturbed brain perfusion may be related to the observed symptoms, and that cranioplasty reliably alleviates these symptoms. We report a case of sinking skin flap syndrome (SSFS) with recovery from neurological sensorimotor deficits after cranioplasty correlated with pre- and postsurgical MR brain perfusion studies.</p> <p>Case Presentation</p> <p>A 42-year-old woman presented with slowly progressive sensorimotor paresis of her left arm after decompressive extensive craniectomy due to subarachnoid hemorrhage four months ago. Her right cranium showed a "sinking skin flap". After cranioplastic repair of her skull defect, the patient fully recovered from her symptoms. Before cranioplasty, reduced brain perfusion in the right central cortical region was observed in MR-perfusion images. After cranioplasty, a marked increase in brain perfusion was observed which correlated with objective clinical recovery.</p> <p>Conclusion</p> <p>There is increasing evidence that impaired blood flow is responsible for delayed motor deficits in patients with sinking skin flap syndrome in the area of compressed brain regions. Symptoms should be evaluated by brain perfusion imaging complementing surgical decision-making.</p

    Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling, human myelofibrosis

    Get PDF
    Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPNlike phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34 + hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF

    The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is Controlled by the Type of Antigenic Stimulus

    Get PDF
    A hallmark of cells comprising the mammalian adaptive immune system is the requirement for these rare naïve T (and B) lymphocytes directed to a specific microorganism to undergo proliferative expansion upon first encounter with this antigen. In the case of naïve CD8+ T cells the ability of these rare quiescent lymphocytes to rapidly activate and expand into effector T cells in numbers sufficient to control viral and certain bacterial infections can be essential for survival. In this report we examined the activation, cell cycle time and initial proliferative response of naïve murine CD8+ T cells responding in vivo to Influenza and Vaccinia virus infection or vaccination with viral antigens. Remarkably, we observed that CD8+ T cells could divide and proliferate with an initial cell division time of as short as 2 hours. The initial cell cycle time of responding CD8+ T cells is not fixed but is controlled by the antigenic stimulus provided by the APC in vivo. Initial cell cycle time influences the rate of T cell expansion and the numbers of effector T cells subsequently accumulating at the site of infection. The T cell cycle time varies with duration of the G1 phase of the cell cycle. The duration of G1 is inversely correlated with the phosphorylation state of the retinoblastoma (Rb) protein in the responding T cells. The implication of these findings for the development of adaptive immune responses and the regulation of cell cycle in higher eukaryotic cells is discussed

    RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells

    Get PDF
    BACKGROUND: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. METHODS: To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). RESULTS: siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. CONCLUSION: In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly

    Myc and cell cycle control

    Get PDF
    Soon after the discovery of the Myc gene (c-Myc), it became clear thatMyc expression levels tightly correlate to cell proliferation. The entry in cell cycle of quiescent cells upon Myc enforced expression has been described in manymodels. Also, the downregulation or inactivation ofMyc results in the impairment of cell cycle progression. Given the frequent deregulation of Myc oncogene in human cancer it is important to dissect out the mechanisms underlying the role ofMyc on cell cycle control. Several parallel mechanisms account forMyc-mediated stimulation of the cell cycle. First,most of the critical positive cell cycle regulators are encoded by genes induced byMyc. These Myc target genes include Cdks, cyclins and E2F transcription factors. Apart from its direct effects on the transcription, Myc is able to hyperactivate cyclin/Cdk complexes through the induction of Cdk activating kinase (CAK) and Cdc25 phosphatases. Moreover, Myc antagonizes the activity of cell cycle inhibitors as p21 and p27 through different mechanisms. Thus, Myc is able to block p21 transcription or to induce Skp2, a protein involved in p27 degradation. Finally, Myc induces DNA replication by binding to replication origins and by upregulating genes encoding proteins required for replication initiation. Myc also regulates genes involved in the mitotic control. A promising approach to treat tumors with deregulated Myc is the synthetic lethality based on the inhibition of Cdks. Thus, the knowledge of the Myc-dependent cell cycle regulatory mechanisms will help to discover new therapeutic approaches directed against malignancies with deregulated Myc. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.The work in the laboratory of the authors is funded by grants SAF11-23796 from Spanish Ministry of Industry and Innovation, and ISCIII-RETIC RD12/0036/0033 from Spanish Ministry of Health to JL, and FIS 11/00397 to MDD. GB is recipient of a fellowship form the FPI Program. We apologize to colleagues whose work has not been cited in the form of their original papers but in reviews and whose work has not been discussed due to space limitations or unintentional omission
    corecore