58 research outputs found

    Bioassays for coastal water quality: an assessment using the larval development of Haliotis midae L

    Get PDF
    The United States Environmental Protection Agency (USEPA) has established a suite of methods that use coastal invertebrate species as bioassay organisms to test industrial and domestic effluent as well as coastal waters for potential toxicity. Although these methods are used globally, the potential of such toxicity tests has not been adequately explored for South African coastal waters. This study serves to describe a simple, cost-effective and relatively quick testing procedure using the development of Haliotis midae larvae as a bioassay of coastal water quality. This test is based on the sensitivity of these larvae to low concentrations of zinc (Zn). Its performance in a field trial demonstrates not only that this test has the potential to identify coastal waters of poor quality, but also that such identification could be of value in attempts to restock natural abalone populations, which are under extreme pressure from legal and illegal exploitation. Further work in this line should focus on the refinement of the methodology for this and other local species and should aim to contribute to the development of suitable criteria for the management of coastal water quality in South Africa. WaterSA Vol.28(4) 2002: 457-46

    Trap selectivity and the effects of altering gear design in the South African rock lobster Jasus lalandii commercial fishery

    Get PDF
    The current trap fishery for the West Coast rock lobster Jasus lalandii in South African waters results in the capture, sorting and release of large numbers of undersized animals. Once removed from the water, they are vulnerable to damage from numerous sources. Even sub-lethal injury may result in a considerable reduction to individual productivity through decreased growth or reproductive potential. Given that the J. lalandii resource is heavily depleted, such wastage may have severe repercussions for the sustainability of the fishery. In an attempt to reduce these losses, 20% of the fishing gear used by the rock lobster industry has been modified to include grids designed to allow undersized rock lobsters (mainly females) to escape the traps before they are hauled. The efficiency of this gear (and two alternatives) was assessed by comparison with standard commercial gear over a range of fishing grounds. Results indicated that, in comparison to standard commercial traps, none of the alternative trap designs would be beneficial to the fishery in the long term, provided that overnight sets remain the most common fishing method. SELECT models were used to evaluate the fishing properties of commercial and bottom-grid traps relative to those of control (fine-mesh) traps. The results indicated that, given the choice, a rock lobster would preferentially enter a commercial trap, followed by a control trap, with bottom-grid traps being the least attractive. This suggests some level of saturation of control traps, a possibility that is of particular concern because the control trap design is used in a fishery-independent monitoring survey.Keywords: escape gaps, Jasus lalandii, rock lobster, SELECT models, trap selectivityAfrican Journal of Marine Science 2002, 24: 37–4

    Changes to regulations and the gear used in the South African commercial fishery for Jasus lalandii

    Get PDF
    Alterations to the operational fishing gear used in the South African west coast rock lobster Jasus lalandii fishery and their resultant impacts are investigated. The most important developments have been: (i) a change during the 1960s from hand-hauled hoopnets to winch-hauled traps, with a concomitant modification of vessels; (ii) the introduction of deck-grid sorters in 1975; (iii) an increase during 1984 of minimum mesh aperture from 62 to 100 mm (stretched), with a concomitant decrease in the length of the trap codend; (iv) a decrease in the minimum legal size during the early1990s; and (v) the introduction of bottom-grid traps in 1994. Most of these alterations have been driven by a tradeoff between the need for greater operational efficiency and concerns surrounding the issue of how best to deal with the problem of catching and releasing specimens smaller than the minimum legal size.Keywords: fishing gear, fishing regulations, Jasus lalandii, rock lobsterAfrican Journal of Marine Science 2002, 24: 365–36

    Dietary generalism accelerates arrival and persistence of coral‐reef fishes in their novel ranges under climate change

    Full text link
    Climate change is redistributing marine and terrestrial species globally. Life‐history traits mediate the ability of species to cope with novel environmental conditions, and can be used to gauge the potential redistribution of taxa facing the challenges of a changing climate. However, it is unclear whether the same traits are important across different stages of range shifts (arrival, population increase, persistence). To test which life‐history traits most mediate the process of range extension, we used a 16‐year dataset of 35 range‐extending coral‐reef fish species and quantified the importance of various traits on the arrival time (earliness) and degree of persistence (prevalence and patchiness) at higher latitudes. We show that traits predisposing species to shift their range more rapidly (large body size, broad latitudinal range, long dispersal duration) did not drive the early stages of redistribution. Instead, we found that as diet breadth increased, the initial arrival and establishment (prevalence and patchiness) of climate migrant species in temperate locations occurred earlier. While the initial incursion of range‐shifting species depends on traits associated with dispersal potential, subsequent establishment hinges more on a species’ ability to exploit novel food resources locally. These results highlight that generalist species that can best adapt to novel food sources might be most successful in a future ocean

    Ecological and methodological drivers of species' distribution and phenology responses to climate change

    Get PDF
    Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy of analyses that seek to quantify the role of climate change in species’ distribution and phenology changes

    Allometric models for liana aboveground biomass in old-growth and secondary tropical forests of Tanzania

    Get PDF
    \ua9 2024 The AuthorsLianas are common in tropical forests, where they influence forest dynamics, thus impacting the global carbon sink, with implications for climate change mitigation. Despite their increasing competitiveness with trees at the global scale, robust measurements of liana aboveground biomass (AGB) have been limited. Here we use data from destructive sampling to develop two separate allometric equations for estimating liana AGB from stem diameter in old-growth (n = 15 lianas) and secondary forests (n = 22 lianas). We compared estimates of AGB using our equations for 3141 lianas (≥ 1 cm diameter) in Tanzania\u27s Kilombero Valley against estimates from previously published equations in other tropical regions. Our equations demonstrated stronger correlations between diameter and destructively measured AGB, than those from previously published equations (R2 = 0.86–0.89, versus R2 = 0.82–0.88). Across all stems, the average stem-level liana AGB estimated using the equation for old-growth forests was 52 % higher than that estimated by the equation for secondary forests, showing that lianas have lower biomass per unit diameter in forests impacted by disturbance. In such forests, liana stems are damaged, deformed, or cannot reach maximum height due to reduced structural support. At the scale of the forest stand, our equations estimated a mean liana AGB of 3.25 Mg ha−1 (95 % Confidence Interval: 1.52–6.96) in old-growth forests and 10.19 Mg ha−1 (5.91–17.64) in secondary forests. These estimates roughly aligned with estimates from other equations, although there was considerable variation. Depending on the equation used, mean stand-level estimates of liana AGB ranged from 2.49–9.76 Mg ha−1 in old-growth forests and 10.19–20.74 Mg ha−1 in secondary forests. Our findings show the variability in liana allometry and AGB with disturbance and successional stage, further underscoring a need for caution when comparing estimates of liana biomass across studies and regions

    Strengthening confidence in climate change impact science

    Get PDF
    Aim: To assess confidence in conclusions about climate-driven biological change through time, and identify approaches for strengthening confidence scientific conclusions about ecological impacts of climate change. Location: Global. Methods: We outlined a framework for strengthening confidence in inferences drawn from biological climate impact studies through the systematic integration of prior expectations, long-term data and quantitative statistical procedures. We then developed a numerical confidence index (Cindex) and used it to evaluate current practices in 208 studies of marine climate impacts comprising 1735 biological time series. Results: Confidence scores for inferred climate impacts varied widely from 1 to 16 (very low to high confidence). Approximately 35% of analyses were not associated with clearly stated prior expectations and 65% of analyses did not test putative non-climate drivers of biological change. Among the highest-scoring studies, 91% tested prior expectations, 86% formulated expectations for alternative drivers but only 63% statistically tested them. Higher confidence scores observed in studies that did not detect a change or tracked multiple species suggest publication bias favouring impact studies that are consistent with climate change. The number of time series showing climate impacts was a poor predictor of average confidence scores for a given group, reinforcing that vote-counting methodology is not appropriate for determining overall confidence in inferences. Main conclusions: Climate impacts research is expected to attribute biological change to climate change with measurable confidence. Studies with long-term, high-resolution data, appropriate statistics and tests of alternative drivers earn higher Cindex scores, suggesting these should be given greater weight in impact assessments. Together with our proposed framework, the results of our Cindex analysis indicate how the science of detecting and attributing biological impacts to climate change can be strengthened through the use of evidence-based prior expectations and thorough statistical analyses, even when data are limited, maximizing the impact of the diverse and growing climate change ecology literature

    The Relative Influence of Competition and Prey Defenses on the Phenotypic Structure of Insectivorous Bat Ensembles in Southern Africa

    Get PDF
    Deterministic filters such as competition and prey defences should have a strong influence on the community structure of animals such as insectivorous bats that have life histories characterized by low fecundity, low predation risk, long life expectancy, and stable populations. We investigated the relative influence of these two deterministic filters on the phenotypic structure of insectivorous bat ensembles in southern Africa. We used null models to simulate the random phenotypic patterns expected in the absence of competition or prey defences and analysed the deviations of the observed phenotypic pattern from these expected random patterns. The phenotypic structure at local scales exhibited non-random patterns consistent with both competition and prey defense hypotheses. There was evidence that competition influenced body size distribution across ensembles. Competition also influenced wing and echolocation patterns in ensembles and in functional foraging groups with high species richness or abundance. At the same time, prey defense filters influenced echolocation patterns in two species-poor ensembles. Non-random patterns remained evident even after we removed the influence of body size from wing morphology and echolocation parameters taking phylogeny into account. However, abiotic filters such as geographic distribution ranges of small and large-bodied species, extinction risk, and the physics of flight and sound probably also interacted with biotic filters at local and/or regional scales to influence the community structure of sympatric bats in southern Africa. Future studies should investigate alternative parameters that define bat community structure such as diet and abundance to better determine the influence of competition and prey defences on the structure of insectivorous bat ensembles in southern Africa

    HDL cholesterol efflux capacity in rheumatoid arthritis patients: contributing factors and relationship with subclinical atherosclerosis

    Get PDF
    Background: Lipid profiles appear to be altered in rheumatoid arthritis (RA) patients because of disease activity and inflammation. Cholesterol efflux capacity (CEC), which is the ability of high-density lipoprotein cholesterol to accept cholesterol from macrophages, has been linked not only to cardiovascular events in the general population but also to being impaired in patients with RA. The aim of this study was to establish whether CEC is related to subclinical carotid atherosclerosis in patients with RA. Methods: We conducted a cross-sectional study that encompassed 401 individuals, including 178 patients with RA and 223 sex-matched control subjects. CEC, using an in vitro assay, lipoprotein serum concentrations, and standard lipid profile, was assessed in patients and control subjects. Carotid intima-media thickness (CIMT) and carotid plaques were assessed in patients with RA. A multivariable analysis was performed to evaluate the relationship of CEC with RA-related data, lipid profile, and subclinical carotid atherosclerosis. Results: Mean (SD) CEC was not significantly different between patients with RA (18.9 ± 9.0%) and control subjects (16.9 ± 10.4%) (p = 0.11). Patients with RA with low (? coefficient ?5.2 [?10.0 to 0.3]%, p = 0.039) and moderate disease activity (? coefficient ?4.6 [?8.5 to 0.7]%, p = 0.020) were associated with lower levels of CEC than patients in remission. Although no association with CIMT was found, higher CEC was independently associated with a lower risk for the presence of carotid plaque in patients with RA (odds ratio 0.94 [95% CI 0.89?0.98], p = 0.015). Conclusions: CEC is independently associated with carotid plaque in patients with RA
    corecore