1,941 research outputs found

    Antibodies Directed against the Extracellular Region of the Epidermal Growth Factor Receptor Adopt Distinct Modes of Binding and Inhibition

    Get PDF
    The work described in this dissertation comprises two distinct projects. In the first, we describe the structural and functional characterization of a family of Golgi associated cytosolic proteins, represented by Vps74 in fungi and GOLPH3 in animals, by X-ray crystallography, biophysical assays, and cellular techniques. We find that Vps74 is required for the proper steady state localization of a subset of Golgi enzymes in yeast, and that disruption of vps74 results in incomplete protein glycosylation. We further describe the crystal structures of Vps74 and GOLPH3, identifying structural motifs required both for oligomer formation and protein function. Finally, we find that both Vps74 and GOLPH3 specifically bind the Golgi enriched phospholipid, PtdIns4P. These results suggest a role for Vps74 and GOLPH3 in retrograde trafficking of components to the Golgi apparatus. In a separate and unrelated project, we characterize several inhibitory antibodies directed against the extracellular region of the epidermal growth factor receptor (EGFR). Aberrant activation of EGFR occurs in large proportion of epithelial cancers. Consequently, this receptor is a target for anti-cancer therapeutics that inhibit its activation, including antibodies and antibody-derived molecules. We have biochemically characterized a panel of conventional inhibitory antibodies with unique properties, and have identified approximate epitopes for these antibodies on domain 3 of EGFR. Additionally, we describe the crystal structures of three unconventional single chain antibody fragments in complex with the EGFR extracellular region. These single chain antibodies bind to novel epitopes on the receptor but share key characteristics with conventional inhibitory antibodies. Our findings highlight the diversity of binding modes among anti-EGFR antibodies, and suggest opportunities for novel therapeutics

    Bioinformatic identification of ClpI, a distinct class of Clp unfoldases in Actinomycetota

    Get PDF
    All clades of bacteria possess Hsp100/Clp family unfoldase enzymes that contribute to aspects of protein quality control. In Actinomycetota, these include ClpB, which functions as an independent chaperone and disaggregase, and ClpC, which cooperates with the ClpP1P2 peptidase to carry out regulated proteolysis of client proteins. We initially sought to algorithmically catalog Clp unfoldase orthologs from Actinomycetota into ClpB and ClpC categories. In the process, we uncovered a phylogenetically distinct third group of double-ringed Clp enzymes, which we term ClpI. ClpI enzymes are architecturally similar to ClpB and ClpC, with intact ATPase modules and motifs associated with substrate unfolding and translation. While ClpI possess an M-domain similar in length to that of ClpC, its N-terminal domain is more variable than the strongly conserved N-terminal domain of ClpC. Surprisingly, ClpI sequences are divisible into sub-classes that either possess or lack the LGF-motifs required for stable assembly with ClpP1P2, suggesting distinct cellular roles. The presence of ClpI enzymes likely provides bacteria with expanded complexity and regulatory control over protein quality control programs, supplementing the conserved roles of ClpB and ClpC

    Antibacterial Activity of and Resistance to Small Molecule Inhibitors of the ClpP Peptidase

    Get PDF
    There is rapidly mounting evidence that intracellular proteases in bacteria are compelling targets for antibacterial drugs. Multiple reports suggest that the human pathogen Mycobacterium tuberculosis and other actinobacteria may be particularly sensitive to small molecules that perturb the activities of self-compartmentalized peptidases, which catalyze intracellular protein turnover as components of ATP-dependent proteolytic machines. Here, we report chemical syntheses and evaluations of structurally diverse β-lactones, which have a privileged structure for selective, suicide inhibition of the self-compartmentalized ClpP peptidase. β-Lactones with certain substituents on the α- and β-carbons were found to be toxic to M. tuberculosis. Using an affinity-labeled analogue of a bioactive β-lactone in a series of chemical proteomic experiments, we selectively captured the ClpP1P2 peptidase from live cultures of two different actinobacteria that are related to M. tuberculosis. Importantly, we found that the growth inhibitory β-lactones also inactivate the M. tuberculosis ClpP1P2 peptidase in vitro via formation of a covalent adduct at the ClpP2 catalytic serine. Given the potent antibacterial activity of these compounds and their medicinal potential, we sought to identify innate mechanisms of resistance. Using a genome mining strategy, we identified a genetic determinant of β-lactone resistance in Streptomyces coelicolor, a non-pathogenic relative of M. tuberculosis. Collectively, these findings validate the potential of ClpP inhibition as a strategy in antibacterial drug development and define a mechanism by which bacteria could resist the toxic effects of ClpP inhibitors.National Institutes of Health (U.S.) (Grant GM-101988

    Crystal structure of Mycobacterium tuberculosis ClpP1P2 suggests a model for peptidase activation by AAA+ partner binding and substrate delivery

    Get PDF
    Caseinolytic peptidase P (ClpP), a double-ring peptidase with 14 subunits, collaborates with ATPases associated with diverse activities (AAA+) partners to execute ATP-dependent protein degradation. Although many ClpP enzymes self-assemble into catalytically active homo-tetradecamers able to cleave small peptides, the Mycobacterium tuberculosis enzyme consists of discrete ClpP1 and ClpP2 heptamers that require a AAA+ partner and protein–substrate delivery or a peptide agonist to stabilize assembly of the active tetradecamer. Here, we show that cyclic acyldepsipeptides (ADEPs) and agonist peptides synergistically activate ClpP1P2 by mimicking AAA + partners and substrates, respectively, and determine the structure of the activated complex. Our studies establish the basis of heteromeric ClpP1P2 assembly and function, reveal tight coupling between the conformations of each ring, show that ADEPs bind only to one ring but appear to open the axial pores of both rings, provide a foundation for rational drug development, and suggest strategies for studying the roles of individual ClpP1 and ClpP2 rings in Clp-family proteolysisNational Institutes of Health (U.S.) (NIH Grant GM-101988)Brown UniversityNational Science Foundation (U.S.) (CAREER award)National Institute of General Medical Sciences (U.S.) (Grant P41 GM103403)United States. Dept. of Energy (Contract DE-AC02-06CH11357

    Restriction of the Conformational Dynamics of the Cyclic Acyldepsipeptide Antibiotics Improves Their Antibacterial Activity

    Get PDF
    The cyclic acyldepsipeptide (ADEP) antibiotics are a new class of antibacterial agents that kill bacteria via a mechanism that is distinct from all clinically used drugs. These molecules bind and dysregulate the activity of the ClpP peptidase. The potential of these antibiotics as antibacterial drugs has been enhanced by the elimination of pharmacological liabilities through medicinal chemistry efforts. Here, we demonstrate that the ADEP conformation observed in the ADEP–ClpP crystal structure is fortified by transannular hydrogen bonding and can be further stabilized by judicious replacement of constituent amino acids within the peptidolactone core structure with more conformationally constrained counterparts. Evidence supporting constraint of the molecule into the bioactive conformer was obtained by measurements of deuterium-exchange kinetics of hydrogens that were proposed to be engaged in transannular hydrogen bonds. We show that the rigidified ADEP analogs bind and activate ClpP at lower concentrations in vitro. Remarkably, these compounds have up to 1200-fold enhanced antibacterial activity when compared to those with the peptidolactone core structure common to two ADEP natural products. This study compellingly demonstrates how rational modulation of conformational dynamics may be used to improve the bioactivities of natural products.National Science Foundation (U.S.) (NSF CAREER Award)Brown UniversityNational Institutes of Health (U.S.) (NIH Grant GM-101988

    Structural basis for inhibition of the epidermal growth factor receptor by cetuximab

    Get PDF
    SummaryRecent structural studies of epidermal growth factor receptor (EGFR) family extracellular regions have identified an unexpected mechanism for ligand-induced receptor dimerization that has important implications for activation and inhibition of these receptors. Here we describe the 2.8 Å resolution X-ray crystal structure of the antigen binding (Fab) fragment from cetuximab (Erbitux), an inhibitory anti-EGFR antibody, in complex with the soluble extracellular region of EGFR (sEGFR). The sEGFR is in the characteristic “autoinhibited” or “tethered” inactive configuration. Cetuximab interacts exclusively with domain III of sEGFR, partially occluding the ligand binding region on this domain and sterically preventing the receptor from adopting the extended conformation required for dimerization. We suggest that both these effects contribute to potent inhibition of EGFR activation

    Structural Evaluation of EGFR Inhibition Mechanisms for Nanobodies/VHH Domains

    Get PDF
    SummaryThe epidermal growth factor receptor (EGFR) is implicated in human cancers and is the target of several classes of therapeutic agents, including antibody-based drugs. Here, we describe X-ray crystal structures of the extracellular region of EGFR in complex with three inhibitory nanobodies, the variable domains of heavy chain only antibodies (VHH). VHH domains, the smallest natural antigen-binding modules, are readily engineered for diagnostic and therapeutic applications. All three VHH domains prevent ligand-induced EGFR activation, but use two distinct mechanisms. 7D12 sterically blocks ligand binding to EGFR in a manner similar to that of cetuximab. EgA1 and 9G8 bind an epitope near the EGFR domain II/III junction, preventing receptor conformational changes required for high-affinity ligand binding and dimerization. This epitope is accessible to the convex VHH paratope but inaccessible to the flatter paratope of monoclonal antibodies. Appreciating the modes of binding and inhibition of these VHH domains will aid in developing them for tumor imaging and/or cancer therapy

    Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX

    Get PDF
    The hexameric AAA+ ring of Escherichia coli ClpX, an ATP-dependent machine for protein unfolding and translocation, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+-ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U↔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+-ring activity.National Institutes of Health (U.S.) (Grant GM-101988)Massachusetts Institute of Technology (Poitras Predoctoral Fellowship

    Search for supersymmetry in events with b-quark jets and missing transverse energy in pp collisions at 7 TeV

    Get PDF
    Results are presented from a search for physics beyond the standard model based on events with large missing transverse energy, at least three jets, and at least one, two, or three b-quark jets. The study is performed using a sample of proton-proton collision data collected at sqrt(s) = 7 TeV with the CMS detector at the LHC in 2011. The integrated luminosity of the sample is 4.98 inverse femtobarns. The observed number of events is found to be consistent with the standard model expectation, which is evaluated using control samples in the data. The results are used to constrain cross sections for the production of supersymmetric particles decaying to b-quark-enriched final states in the context of simplified model spectra.Comment: Submitted to Physical Review
    corecore