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Abstract
The work described in this dissertation comprises two distinct projects. In the first, we describe the structural
and functional characterization of a family of Golgi associated cytosolic proteins, represented by Vps74 in
fungi and GOLPH3 in animals, by X-ray crystallography, biophysical assays, and cellular techniques. We find
that Vps74 is required for the proper steady state localization of a subset of Golgi enzymes in yeast, and that
disruption of vps74 results in incomplete protein glycosylation. We further describe the crystal structures of
Vps74 and GOLPH3, identifying structural motifs required both for oligomer formation and protein
function. Finally, we find that both Vps74 and GOLPH3 specifically bind the Golgi enriched phospholipid,
PtdIns4P. These results suggest a role for Vps74 and GOLPH3 in retrograde trafficking of components to the
Golgi apparatus.

In a separate and unrelated project, we characterize several inhibitory antibodies directed against the
extracellular region of the epidermal growth factor receptor (EGFR). Aberrant activation of EGFR occurs in
large proportion of epithelial cancers. Consequently, this receptor is a target for anti-cancer therapeutics that
inhibit its activation, including antibodies and antibody-derived molecules. We have biochemically
characterized a panel of conventional inhibitory antibodies with unique properties, and have identified
approximate epitopes for these antibodies on domain 3 of EGFR. Additionally, we describe the crystal
structures of three unconventional single chain antibody fragments in complex with the EGFR extracellular
region. These single chain antibodies bind to novel epitopes on the receptor but share key characteristics with
conventional inhibitory antibodies. Our findings highlight the diversity of binding modes among anti-EGFR
antibodies, and suggest opportunities for novel therapeutics.
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ABSTRACT 

 

ANTIBODIES DIRECTED AGAINST THE EXTRACELLULAR REGION OF THE EPIDERMAL 

GROWTH FACTOR RECEPTOR ADOPT DISTINCT MODES OF BINDING AND INHIBITION 

Karl R. Schmitz 

Kathryn M. Ferguson 

The work described in this dissertation comprises two distinct projects.  In the first, we 

describe the structural and functional characterization of a family of Golgi associated cytosolic 

proteins, represented by Vps74 in fungi and GOLPH3 in animals, by X-ray crystallography, 

biophysical assays, and cellular techniques.  We find that Vps74 is required for the proper 

steady state localization of a subset of Golgi enzymes in yeast, and that disruption of vps74 

results in incomplete protein glycosylation.  We further describe the crystal structures of Vps74 

and GOLPH3, identifying structural motifs required both for oligomer formation and protein 

function.  Finally, we find that both Vps74 and GOLPH3 specifically bind the Golgi enriched 

phospholipid, PtdIns4P.  These results suggest a role for Vps74 and GOLPH3 in retrograde 

trafficking of components to the Golgi apparatus. 

In a separate and unrelated project, we characterize several inhibitory antibodies directed 

against the extracellular region of the epidermal growth factor receptor (EGFR).  Aberrant 

activation of EGFR occurs in large proportion of epithelial cancers.  Consequently, this receptor 

is a target for anti-cancer therapeutics that inhibit its activation, including antibodies and 

antibody-derived molecules.  We have biochemically characterized a panel of conventional 

inhibitory antibodies with unique properties, and have identified approximate epitopes for these 

antibodies on domain 3 of EGFR. Additionally, we describe the crystal structures of three 

unconventional single chain antibody fragments in complex with the EGFR extracellular region.  

These single chain antibodies bind to novel epitopes on the receptor but share key 

characteristics with conventional inhibitory antibodies.  Our findings highlight the diversity of 

binding modes among anti-EGFR antibodies, and suggest opportunities for novel therapeutics. 
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1  Structure and function of Vps74 and GOLPH3 

1.1 Introduction 

1.1.1 Trafficking and the Golgi apparatus 

One of the hallmarks of eukaryotic life is the presence of specialized intracellular 

membrane bound compartments.  Distinct complements of protein, carbohydrate, and lipid 

enable these organelles to carry out specific cellular functions:  DNA transcription occurs in the 

nucleus; the citric acid cycle and oxidative phosphorylation occur in the mitochondria; etc.  The 

resulting compartmentalization of cellular processes is a key factor in the success and diversity 

of eukaryotic organisms.  Consequently, eukaryotes possess well conserved and highly 

regulated mechanisms to enforce the proper spatial localization of cellular material. 

The importance of this machinery is particularly apparent when considering the 

endomembrane system, and especially the Golgi apparatus.  Much of the material that 

comprises the organelles, the plasma membrane, and matter secreted by the cell is processed, 

sorted, and packaged by the Golgi.  Cargo molecules enter the Golgi from the endoplasmic 

reticulum (ER) and traverse the Golgi apparatus in the anterograde direction, crossing distinct 

cis, medial, and trans Golgi compartments in the process.  (Multiple models of Golgi function 

have been proposed [32-36]; current data suggest that both cisternal maturation and vesicular 

transport occur to some degree [37-39].)  Each sub-compartment is enriched with a subset of 

resident Golgi enzymes.  Anterograde transport in conjunction with spatial organization of ER 

and Golgi enzymes gives rise to temporal organization in the processing of cargo, as in the 

stepwise modification of glycoproteins (see Section 1.1.2). 

The steady state localization of resident ER and Golgi components must be 

constitutively enforced, as a portion of these molecules is continually mislocalized downstream 

along with anterograde cargo.  Well conserved retrograde trafficking complexes identify 

mislocalized molecules and return them to their resident compartments.  COPI (coat protein 

complex I) coated vesicles mediate intra-Golgi and Golgi-to-ER retrograde transport [40], while 

the retromer complex directs retrieval of proteins from endosomes to the trans-Golgi network 



 2    

[41].  The molecular interactions that allow retrograde trafficking complexes to directly or 

indirectly recognize cargo and destination compartments are not thoroughly understood.  

Cytosolic KKXX and luminal KDEL motifs target cargo to the COPI complex, and thus to the ER 

[40].  Additionally, short retention motifs have been identified in the cytosolic tails of some 

retromer cargo proteins [41].  However, other classes of resident Golgi proteins exist for which 

no retention motif has been described. 

1.1.2 Protein glycosylation is a primary function of the Golgi apparatus 

Glycoproteins are a major constituent of Golgi anterograde cargo.  A large fraction of 

proteins processed through the endomembrane system is modified by N- or O-linked 

glycosylation.  The details of protein glycosylation vary somewhat among eukaryotes, but a 

general outline is conserved [42]. 

Core glycans are transferred to nascent polypeptides in the ER.  In the Golgi apparatus, 

these glycans are modified and elaborated by the stepwise action of various glycosyltransferase 

enzymes.  These enzymes adopt specific compartmental distributions within the Golgi (cis, 

medial, or trans) [42], and this spatial distribution roughly reflects the order in which these 

enzymes act on immature glycoproteins [43].  Disruption of the steady-state distribution of 

glycotransferases may alter the extent of protein glycosylation and manifest a variety of 

downstream effects in the cell; indeed, defective glycosylation is associated with several human 

diseases [44]. 

The majority of glycosyltransferases are type II transmembrane proteins, bearing a short 

N-terminal cytosolic tails [42, 43].  Studies have highlighted the importance these cytosolic 

regions in maintaining the proper localization of Golgi glycosyltransferases [43], but only recently 

have retention motifs been identified for a subset of these enzymes [19, 45, 46] (see Section 1.2). 

1.1.3 Phospholipids function as Golgi markers and regulators 

Phosphoinositide (PI) lipids comprise a small molar fraction of eukaryotic membranes 

overall, but play a large role in cellular signaling and membrane recognition [47, 48].  These 

phospholipids are enriched in specific membranes and organelles, and their levels are strictly 
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regulated.  PIs serve as second messengers [49] (as in PI3K signaling [50]), as ligands for several 

classes of membrane binding domains (PH, PX, FYVE, etc.) [47], and as membrane markers 

(PtdIns(4,5)P2 is enriched in the plasma membrane [48]; PtdIns4P is enriched in the Golgi [48]).   

PtdIns4P has been found to be a major regulator of Golgi function.  Steady state levels 

of PtdIns4P are governed by the action of phosphatidylinositol 4-kinases (PtdIns 4-kinases) and 

phosphatidylinositol phosphatases.  Yeast express a relatively small number of PtdIns 

phosphatases and kinases, and serve as a convenient model for PI function.  In quiescent yeast 

the Sac1 PtdIns phosphatase localizes to the Golgi and depletes Golgi PtdIns4P, which results 

in the downregulation of secretion [51].  Similarly, under starving conditions in yeast, PtdIns4P 

levels are diminished by the dissociation of Pik1/Frq1, the sole Golgi PtdIns 4-kinase, from the 

Golgi apparatus [52]; disruption of Pik1/Frq1 impairs secretion [53, 54], suggesting a reciprocal 

effect from that of Sac1.  The molecular basis for the requirement of PtdIns4P is presumably 

multifaceted.  It has been noted that vesicle trafficking from the trans-Golgi requires recognition 

of PtdIns4P by clathrin adapters [55].  Since PtdIns4P is the major PI marker in Golgi 

membranes [48, 56], additional links between PtdIns4P binding and trafficking are likely (see 

Section 1.3). 

1.1.4 Golgi associated proteins Vps74 and GOLPH3 are implicated in trafficking 

Vps74 (vacuolar protein sorting 74) and GOLPH3 (Golgi phosphoprotein 3; also called 

GMx33/GPP34) are fungal and animal orthologs, respectively, of a family of Golgi-associated 

proteins.  (The sub-cellular localization of Vps74 in yeast has been reported as cytosolic [57]; 

however, this is likely an artifact induced by a C-terminal GFP tag.  See section 1.2.6.)  These 

proteins were the subject of few studies prior to 2008, yet several early reports link 

Vps74/GOLPH3 to retrograde trafficking.  Rat GOLPH3 is a Golgi localized peripheral membrane 

protein [58].  Deletion of VPS74 in yeast results in defective sorting of carboxypeptidase Y [59].  

Deletion of VPS74 along with either YPT6 (a Rab-like GTPase required for fusion of endosome-

derived vesicles to the trans-Golgi) or RIC1 (a subunit of the GTP exchange factor that acts on 

Ypt6) results in synthetic lethality [60].   
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More recent studies, including the work discussed in the following sections (published in 

2008 and 2009 [19, 28]), have identified several important functions for these proteins.  Vps74 

interacts with subunits of the COPI coat [45] and enforces the steady state localization of a 

subset of Golgi resident proteins in fungi [19, 45] (see Section 1.2); GOLPH3 links myosin to the 

Golgi membrane in animal cells [61]; and both Vps74 and GOLPH3 are PtdIns4P binding 

domains [28, 61] (see Section 1.3).  Moreover, GOLPH3 is a potent and prevalent oncogene in 

human cancers [62]. 

 

1.2 Vps74 is required for the proper steady-state localization of Golgi 
mannosyltransferas enzymes in yeast 

1.2.1 Deletion of VPS74 in yeast results in a partial defect in glycosylation of 

secreted proteins 

To begin to understand the cellular role of Vps74, we investigated the effects caused by 

deletion of the Vps74 genomic locus in Saccharomyces cerevisiae.  We find that vps74Δ cells 

are viable, but exhibit deficient glycosylation of secreted proteins.  In pulse chase experiments, 

this glycosylation defect is indicated by the higher electrophoretic mobility of 35S-labeled 

secreted glycoproteins analyzed by SDS-PAGE (Fig 1A).   

We next asked whether both N-linked and O-linked carbohydrate is altered in vps74Δ 

cells.  The transfer of core N- and O-linked glycans is catalyzed by distinct enzymes in the ER, 

but the same Golgi glycosyltransferase may modify both classes polysaccharide [63].  We 

observe glycosylation defects in both an N-linked glycoprotein (carboxypeptidase Y, CPY; Fig. 

1B) and an O-linked glycoprotein (Hsp150; Fig 1C). 

Since deletion of VPS74 does not entirely abolish protein glycosylation (an essential 

cellular function), we hypothesized that Vps74 is required for complete elaboration or 

modification of the immature oligosaccharide chain, subsequent to the addition of the core 

glycan in the ER.  This is supported by the observation that the ER-modified precursor form of 
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Figure 1.  Vps74 is required for proper protein glycosylation in yeast. 

(A) Pulse-chase secretion assay.  The indicated strains were pulse labeled with 35S-

Met/Cys and chased with unlabeled Met/Cys.  Secreted proteins were precipitated from 

growth medium, separated by SDS-PAGE, and visualized by fluorography.  (B)  The 

indicated strains were 35S-Met/Cys pulse-labeled.  The N-linked glycoprotein 

carboxypeptidase Y (CPY) was immunoprecipitated and visualized as in (A).  The 

positions of the ER modified form (p1), Golgi modified form (p2), and mature CPY are 

indicated. (C)  The glycosylation of HA-tagged Hsp150 was analyzed in wild type and 

vps74Δ strains.  Secreted protein was precipitated from growth media, and exogenous 

Hsp150 was analyzed by western blot probed with anti-HA antibody. 

 

(From experiments done by J. Liu, C.S. Wood, C.G. Burd; adapted from [19].) 
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CPY is unaffected in vps74Δ cells (Fig. 1B).  This suggests that Vps74 is essential for the 

function of one or more of Golgi glycosyltransferase, which corresponds well with its established 

Golgi distribution. 

A genome wide screen of S. cerevisiae identified yeast lacking VPS74 as severely 

deficient in the binding of the cationic dye, Alcian Blue [64].  In wild type yeast, this dye binds to 

the negatively charged cell wall and indicates the presence of α-1,2-linked mannose phosphate.  

Since incorporation of mannose phosphate is accomplished by a family of Golgi-localized α-1,2-

mannosyltransferases, we hypothesized that the observed glycosylation defect occurs through 

loss of function of these enzymes.  To test which of these α-1,2-mannosyltransferases might be 

affected by loss of VPS74, we compared the glycosylation of 35S-labeled secreted proteins in 

vps74Δ cells to that in strains carrying deletions of mannosyltransferase genes.  Individual 

deletion of several mannosyltransferases partially phenocopies the vps74Δ phenotype, with 

kre2Δ resulting in the greatest decrease in glycosylation (Fig. 1A). 

1.2.2 Vps74 is required for Golgi localization of yeast mannosyltransferases 

Deletion of VPS74 has previously been noted to affect the sorting of carboxypeptidase Y 

[59], therefore we asked whether VPS74 deletion may affect mannosyltransferase function by 

altering the normal Golgi localization of these enzymes.  To test this, the subcellular localization 

of C-terminally GFP tagged mannosyltransferases was determined in wild type and vps74Δ 

yeast.  Mannosyltransferases adopt a punctuate distribution in wild type cells (Fig. 2), correlated 

with Golgi localization, and similar to the localization of N-terminally GFP tagged Vps4 (Fig. 2) 

[45].  However, in vps74Δ cells, mannosyltransferases localize to the lysozome-like yeast 

vacuole, downstream of the Golgi.  This implicates Vps74 in retrograde trafficking of these 

enzymes to the Golgi apparatus.  

1.2.3 Vps74 directly interacts with yeast Golgi mannosyltransferases 

Given that Vps74 co-localizes with mannosyltransferase enzymes in wild type cells, we 

next asked whether Vps74 directly binds these enzymes.  The α-1,2-mannosyltransferases are 
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Figure 2.  Golgi mannosyltransferases are mislocalized in vps74Δ. 

The subcellular distribution is shown of C-terminally GFP-tagged versions of Golgi 

mannosyltransferases Kre2 and Mnn2, a truncated form of Kre2 lacking the luminal 

catalytic domain, and control proteins Alg5, Sys1, and Tvp15.  Golgi distribution of 

Kre2, Mnn2, and truncated Kre2 is apparent by the punctuate distribution in wild type 

yeast.  In the vps74Δ strain these proteins localize instead to diffuse bodies consistent 

with the lysozome-like yeast vacuole.  The distribution of control proteins is unaffected 

in vps74. 

 

(From experiments done by J. Liu, C.S. Wood, C.G. Burd; adapted from [19].  

Mannosyltransferase enzymes Mnn5 and Och1 are similarly mislocalized; see [19, 23].) 
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type II transmembrane proteins, composed of a short ≈ 10 amino acid cytosolic region, a 

transmembrane α-helix, a luminal juxtamembrane stalk region, and a luminal catalytic domain 

[65].  If cytosolic Vps74 directly interacts with mannosyltransferases, it must do so via their short 

cytosolic N-terminal regions.  To test if this is the case, we generated glutathione S-transferase 

(GST) constructs with the N-terminal cytosolic peptides of mannosyltransferase enzymes fused 

to the N-terminus of GST, preserving the native topology of the peptide.  (This is the reverse of 

the usual topology of GST fusion constructs.)  We find that mannosyltransferase-GST fusions 

immobilized to glutathione (GSH) agarose beads pull down exogenously expressed Vps74 from 

E. coli lysates (Fig. 3B), as well as purified Vps74 in solution (Fig. 3A). 

The N-terminal cytosolic peptides of yeast mannosyltransferases are typically composed 

of hydrophobic and basic amino acids.  To address the concern that the presence of these 

sequences on the N-terminus of GST may have destabilized or partially unfolded the GST 

domain, giving rise to nonspecific hydrophobic interactions with Vps74, we also assayed the 

interaction between Vps74 and immobilized synthetic peptide.  A peptide comprising the first 11 

amino acids of the cytosolic region of mature Kre2, followed by cysteine, was synthesized and 

immobilized on agarose beads by thiol coupling.  Free cysteine was immobilized on control 

beads.  Immobilized Kre2 N-terminal peptide specifically pulls down purified Vps74 (Fig. 3C), 

confirming that Vps74 directly binds the mannosyltransferase cytosolic N-terminal region. 

1.2.4 Crystal structure of Vps74 at 2.8 Å resolution 

Cellular studies suggest a role for Vps74 in establishing interactions between retrograde 

transport components and specific Golgi enzymes.  However, the lack of sequence homology 

between Vps74 and any structurally characterized motif led us to question the structural basis 

for these interactions.  To address this and provide structural insight into the function of Vps74, 

we solved its crystal structure to a resolution of 2.8 Å.  Full length S. cerevisiae Vps74 was 

expressed in E. coli and purified to homogeneity.  Small needle shaped crystals with hexagonal 

cross section initially formed by hanging drop vapor diffusion in a number of crystallization 

conditions containing both polyethylene glycol (PEG), as the principle precipitant, and CaCl2.   
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Figure 3.  Vps74 interacts with the cytosolic N-terminal region of Golgi 

mannosyltransferases. 

(A). A protein fusions incorporating the first 15 amino acids of Kre2 followed by GST was 

immobilized on GSH beads.  Beads were incubated in binding buffer with purified T7-

tagged Vps74.  0:1, 1:1, and 1:0 ratios of GST-fusion:GST were used.  A constant total 

amount of immobilized protein was used.  “In” represents 0.5% Vps74 input.  (B)  GST 

fusions incorporating the first 15 amino acids of the indicated proteins were immobilized 

on GSH beads and incubated with E. coli lysates containing T7 tagged Vps74.  1:5, 1:1, 

and 1:0 GST-fusion:GST ratios were used.  (C)  A peptide consisting of the first 11 amino 

acids of mature Kre2, followed by cysteine, was immobilized to Sulfolink beads by thiol 

coupling.  Beads were incubated in binding buffer with purified T7-tagged Vps74.  The 

lower band is C-terminal degradation product of Vps74.   

 

(Panel B from experiments done by J. Liu, C.S. Wood, C.G. Burd; adapted from [19].) 
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Growth conditions were subsequently optimized, in part by exploring the effects of additive 

compounds.  It was found that the chelating agents ethylenediaminetetraacetic acid (EDTA) and 

the chemically related molecule ethylene glycol tetraacetic acid (EGTA) substantially improve 

crystal growth and quality.  Diffraction quality crystals of native (Fig. 4) and selenomethionine-

containing Vps74 were ultimately obtained from reservoir conditions of 8% PEG 3350, 5% 

ethylene glycol, 50 mM MES, 50 mM NaCl, 50 mM CaCl2, 10 mM EGTA, pH 6.0.  Both EDTA 

and EGTA strongly chelate calcium anions with 1:1 stoichiometry.  In the Vps74 crystallization 

condition, the concentration of free calcium is approximately 40 mM [66].  However, we note 

that crystal growth is markedly different in conditions of 40 mM CaCl2, without EGTA, compared 

to the above condition.  The effects of calcium and chelator on Vps74 are discussed below 

(Section 1.2.7). 

The crystal structure of Vps74 was determined by selenium multi-wavelength anomalous 

dispersion (MAD) methods.  Experimental phases were calculated from 3.5 Å resolution 

anomalous data, and were applied to a 2.8 Å native dataset (Table 1).  Clear electron density for 

Vps74 was observed in experimentally phased maps, with the exception of the first 61 amino 

acids.  MALDI (matrix-assisted laser desorption ionization) mass spectrometry of purified Vps74 

gave no evidence of proteolysis of these amino acids, indicating that the N-terminal region is 

intact in the purified protein but disordered in the crystal.  This region is poorly conserved 

throughout Vps74 and GOLPH3 proteins, and is predicted to be mostly disordered by secondary 

structure prediction algorithms Jpred [67] and Prof [68].  Additionally, it has been reported that 

deletion of the first 53 amino acids of GOLPH3 does not affect its targeting to the Golgi [69, 70], 

suggesting that this region of the protein may not be critical for at least this aspect of the 

protein’s function.  A variant lacking the first 59 amino acids of Vps74 (Vps74Δ59) crystallized 

under similar conditions, in the same crystal form, and with the same arrangement of protein in 

the asymmetric unit (Table 1).  Crystallization of Vps74Δ59 exhibited less dependence on the 

concentration or presence of calcium and EGTA. 
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Figure 4.  Crystals of full length Vps74.

Vps74 forms rod-shaped crystals with hexagonal cross section.  Crystals with maximum 

dimensions of 75 × 75 × 300 μm formed in 8% PEG3350, 5% ethylene glycol, 50 mM 

MES, 50 mM NaCl, 50 mM CaCl2, 10mM EGTA, pH 6.0. 
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1.2.5 Vps74 adopts a novel α-helical fold, which includes a prominent β-hairpin 

motif 

 Vps74 forms a single globular domain that is predominantly α-helical (Fig. 5).  A central 

hydrophobic four-helix bundle (α1, α2, α8, and α12) lies at the core of the protein.  A series of 

solvent-exposed loops and eight amphipathic helices lie roughly orthogonal to the core.  Strands 

β3 and β4 form a β-hairpin (comprising amino acids 197-208), which projects away from the bulk 

of the helical domain and exposes hydrophobic residues at its side (M198, F201, F204, M206) 

and tip (F202, L203). It seems unlikely that this conformation of the β-hairpin is stable 

independently in solution, given the energetically unfavorable exposure of hydrophobic surface 

area that would result. Indeed, as discussed in detail below (Section 1.2.6), this region is 

involved in an intermolecular interaction with a non-crystallographically related Vps74 molecule 

in the asymmetric unit. 

 The Vps74 structure appears to be novel, and bears no detectible homology to known 

protein folds as assessed by the DALI server [71], automated comparison against the CATH 

structural database [72], and SSM comparison against the SCOP database [73].  DALI searches 

and sequence-based threading algorithms [74] do highlight similarity between the β-hairpin 

region of Vps74 (α1, β3, β4, and α6) and the β-hairpin "wing" of winged helix proteins [75, 76]. 

As highlighted in green in Fig. 6A & B, both structures contain a β-hairpin projection on a helical 

base.  Though most winged helix (WH) domains are found in DNA-binding proteins, the fold also 

occurs in protein-protein interfaces [75].  Most interestingly, Vps22, Vps25, and Vps36, subunits 

in the ESCRT-II endosomal trafficking complex, all contain two repeats of a WH motif [77, 78].  

Vps22 and Vps36 both use their C-terminal WH motifs to interact with Vps25.  We suggest that 

the Vps74 WH-like region might also play an important role in protein-protein interactions (see 

Section 1.2.6). The Vps74 β-hairpin region is not directly homologous to the winged helix 

proteins, however, as it exhibits no significant sequence similarity and it differs from WH motifs 

in its topology (Fig. 6).  Helices α1 and α6 replace H1 and H3 in the WH motif (H2 is missing). In
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Figure 5.  The Vps74 monomer adopts a novel α-helical fold.

(A) The X-ray crystal structure of a Vps74 monomer is shown as a cartoon.  A network of 

amphipathic helices (red) surrounds a core of four hydrophobic helices (gold).  A 

hydrophobic β-hairpin (cyan, β3/β4) projects outward from this helical domain.  (B) An 

orthogonal view of Vps74, generated by an approximate 90° rotation of (A) about a 

horizontal axis. (C) A TOPS style  [16] diagram shows the Vps74 fold topology.  Circles 

represent helices, and triangles denote strands, colored as in (A) and (B). 
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Figure 6.  The Vps74 β-hairpin exhibits similarities to WH motifs.

The Vps74 β-hairpin region (A) exhibits structural similarities to the “wing” of winged-helix 

domains, such as Vps36 (B).  β-hairpins and neighboring α-helices are indicated in green.  

Vps74 helices α1 and α6 adopt similar positions with respect to the β-hairpin as helices 

H1 and H3 in Vps36.  (There is no analog to H2 in Vps74.)  In both cases, the hairpin 

extends from the C-terminus of the last helix (α6 and H3).  (C) The WH-domain of Vps36 

mediates an interaction with protein partners in the ESCRT-II complex.  The Vps74 β-

hairpin is also involved in protein/protein interactions. 
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both cases, the hairpin extends from the C-terminus of the last helix (α6 and H3).  Intriguingly, 

the WH-like motif of Vps74 mediates two intermolecular interactions in the crystal structure. 

1.2.6 Vps74 forms a tetramer in the crystal structure 

Vps74 crystallized with four molecules in the asymmetric unit.  These subunits associate 

to form a tetramer with two-fold, non-crystallographic symmetry.  As shown in Fig. 7A & B, the 

Vps74 tetramer comprises two central (yellow and cyan) and two peripheral (red and blue) 

subunits, stabilized by three distinct types of interaction that we refer to as the “inner” (Fig. 7A), 

"β-hairpin” (Fig. 7B), and “outer” (Fig. 7B) interactions. 

The inner interaction involves a symmetric association of the two central Vps74 

molecules through an interface consisting of their α1-α2 and α9-α10 loops (Fig. 8A & B).  This 

interface is stabilized predominantly through electrostatic and hydrogen-bonds (Table 2) 

mediated by the α1- α2 loop (particularly R79 and symmetric van der Waals ring packing of F87), 

α7, and the α9- α10 region (notably T271 and R277).  The inner interaction has the largest 

associated buried surface area of the three interaction types (burying 1255 Å2 on each molecule). 

The β-hairpin interaction links a peripheral molecule (e.g. the red molecule in Fig. 7A & B) to one 

of its two central interaction partners (yellow in Fig. 7A & B). This interaction involves the mutual 

burial of a hydrophobic side chain (M206) between the β3/β4 hairpins of two Vps74 molecules 

(Fig. 8C), and the projection of an FFLF motif at the tip of each hairpin (residues 201-204) into a 

pocket formed by α6 and the α1-α2 loop on the partner (Fig. 8C).  A salt bridge between the 

hairpin (D205) and a side chain on loop α6 (R181) further stabilizes the interaction.  The 

projection of hydrophobic side chains from the tip of a β-hairpin into the pocket of a binding 

partner is a feature observed in WH motif-driven protein-protein interactions [77-79], including 

those that stabilize the ESCRT-II complex (Fig. 6). The β-hairpin interaction buries ≈ 1000 Å2 on 

each subunit, of which a high proportion (70%) is hydrophobic (Table 2) [80]. 

Finally, the outer interaction connects each peripheral molecule to its other central 

interaction partner (yellow and blue subunits, Fig. 7B & 8A). This is an asymmetric interaction in



 17   

Figure 7.  Vps74 forms a tetramer in the crystal structure.

A cartoon of the Vps74 tetramer is shown in “top” orientation (A) showing the overall two-

fold symmetry, and in “side” orientation (B).  Monomers occupy two distinct positions: 

central (gold and cyan) and peripheral (blue and red).  The central subunits associate via 

a two-fold symmetric “inner interaction,” highlighted in (A).  A central and peripheral 

subunit associate via their hydrophobic β-hairpins in a “β-hairpin interaction,” indicated in 

(B).  Each central subunit also associates with a peripheral subunit in an “outer 

interaction.”  Loops have been smoothed for clarity.  Cartoons rendered in Pymol [12]. 
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Figure 8.  The Vps74 tetramer is stabilized by three distinct interactions. 

(A) Cartoon of Vps74 tetramer, showing the approximate two-fold symmetry of the β-

hairpin interaction. In the three foreground subunits, the α1/α2 loop, α9, and the α9/α10 

loop are highlighted in green. Loops have been smoothed for clarity.  (B) Detailed view of 

the inner interaction. Side chains that make contacts across the interface are shown in 

stick representation. Hydrogen bond/salt bridge interactions are shown. (C) Close up view 

of the interaction of the tip of the b-hairpin with the pocket formed by α6 and the α1/α2 

loop. The side chains at the tip of the β-hairpin from the gold subunit (amino acids 202–

206) are shown in stick representation. A transparent surface is shown around the red 

subunit.   
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which amino acids from the α1-α2 and α9-α10 loops (notably D80, R79, Y274, R277, D278) of 

the peripheral subunit contact the α3-β2, α5-α6, and C-terminal regions (notably R120, F121, 

D161, E166) of the central subunit. This interaction comprises mostly polar and electrostatic 

contacts, and the regions involved are quite open to solvent, rather than forming a unified 

solvent excluded contact area (as in the inner and β-hairpin interactions).  Although the outer 

interaction buries the smallest area (≈ 750 Å2 per molecule), it contributes to the simultaneous 

binding of each peripheral subunit to two central subunits, and is likely to be critical for 

stabilizing tetrameric assembly.  

As described, subunits in the Vps74 tetramer occupy either central or peripheral 

positions.  Subunits in each position stabilize tetramer formation through a different complement 

of interactions.  Amino acids of the α1/α2 loop participate in all three interactions (indicated in 

Fig. 8A), and this loop occupies distinct conformations in the central and peripheral subunits.  

Consequently, there are no “unused” interaction surfaces on the crystallographic Vps74 

tetramer, and a higher order oligomer cannot form solely utilizing the observed inner, outer, and 

β-hairpin interactions. 

It is notable that the C-termini of the central subunits are relatively occluded in the 

tetramer, by both an outer and a β-hairpin interaction (Fig. 8A).  A bulky group (such as GFP) 

fused to the Vps74 C-terminus (Vps74-GFP) would be expected to hinder tetramer formation. 

This may account for the discrepancy in reported localization [57] and loss of in vivo function 

(Fig. 17A) of Vps74-GFP. 

 In addition to the extent of the protein-protein interfaces in the Vps74 tetramer, 

evidenced by their substantial buried surface areas and shape complementarities (Table 2), 

sequence conservation data suggest that the tetramer is physiologically significant.  The regions 

of Vps74 that form interaction surfaces in the tetramer, particularly the β3/β4 hairpin, are 

strongly conserved across fungal and animal homologs (Figs. 9 & 10).  Further, by examining the 

degree of conservation of solvent-exposed residues on the surface of the tetramer, distinct 

regions are apparent (Fig. 11A).  The lower concave surface (Fig. 11A, bottom view) possesses a
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Table 2. Details of the three protein-protein interfaces that stabilize the Vps74 tetramer 

 β-hairpin1 Inner Outer1 

Number of Hydrogen bonds (≤ 3.5 Å) 6 20 6 

Salt bridge interactions 2 4 3 

Area occluded from solvent2 (Å2) 1004 Å2 1256 Å2 757 Å2 

  Polar area (% of total) 295 Å2 (29 %) 698 Å2 (56 %) 362 Å2 (48 %) 

  Apolar area (% of total) 709 Å2 (71 %) 558 Å2 (44 %) 395 Å2 (52%) 

Shape complementarity3 0.66 0.60 0.62 

1.  Average for the two representations of this interface in the asymmetric unit. 

2.  Average area occluded on each subunit. 

3.  Calculated with the SC module in CCP4 [8]. 
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Figure 9.  Multiple sequence alignment of Vps74 fungal and animal homologs.

A multiple sequence alignment shows sequence homology between fungal Vps74 and 

animal GOLPH3 homologs.  Vps74 secondary structure and tetramer interface amino 

acids are indicated.  The alignment was generated by ClustalW [4] and manually 

optimized. 
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high degree of sequence conservation, while the upper convex surface (Fig. 11A, top view) does 

not.  This segregation of conserved surface-exposed amino acids is mirrored in the electrostatic 

potential of the tetramer (Fig. 11B), which may be relevant since the N-terminal tails of 

mannosyltransferases have substantial basic character.  The conserved concave face of Vps74 

is negatively-charged whereas the less conserved convex surface is more basic.  Additional 

regions of high amino acid conservation, appreciated in the top view in Fig. 11A, also correlate 

with regions of strong negative electrostatic potential (Fig. 11B).  In addition to supporting the 

relevance of the oligomer that we observe in the crystal, these observations may have 

implications for Vps74 function. 

1.2.7 Vps74 forms an oligomer in certain solution conditions 

To assess whether this tetramer may form outside of the crystallization conditions, we 

analyzed the oligomeric state of Vps74 in solution.  In simple buffer conditions (25 mM HEPES, 

150 mM NaCl, pH 7.5) both Vps74 and Vps74Δ59 appear monomeric by sedimentation velocity 

analytical ultracentrifugation (SV AUC; Fig. 12 & solid blue and black lines Fig. 13), size exclusion 

chromatography, and dynamic light scattering experiments (data not shown). Only at high 

protein concentrations (> 25 μM) are higher-order species detected (apparent as a faster 

sedimenting shoulder by SV AUC, red curve in Fig. 12), and data were consistent only with weak 

dimerization (KD > 100 μM).  

By contrast, in buffer containing 10 mM CaCl2 plus 10 mM EGTA we observe clear 

evidence of tetramer formation by SV AUC by both Vps74 and Vps74Δ59 (dashed black and 

blue curves, Fig. 13).  Based on the distribution of Vps74 into monomer and tetramer 

populations, we estimate a dissociation constant (KD) for the monomer-tetramer equilibrium in 

the presence of Ca/EGTA in the range of 5-10 μM.  The formation of some higher order species 

(Fig. 13A) prevented a more quantitative analysis of tetramer stability.  Nevertheless, the 

appearance of tetramer both in the crystallographic asymmetric unit and under certain solution 

conditions suggests that the same interactions stabilize both oligomers. 
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Figure 10.  Vps74 surfaces involved in the tetramer interactions are well conserved.  

Amino acid conservation based on a multiple sequence alignment of fungal Vps74 

proteins is projected on a surface representation of a central (A) or a peripheral (B) 

subunit of the Vps74 tetramer.  Green indicates greatest conservation; white indicates 

least.  Remaining subunits are shown as gray cartoons.  Loops have been smoothed for 

clarity.  Amino acids that form the interface between tetramer subunits are relatively well 

conserved.  This pattern of conservation extends to animal GOLPH3 (not shown). 
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Figure 11.  The distribution of conserved amino acids and surface charges reveal 

features on the surface of Vps74.   

(A) Sequence conservation among fungal homologs of Vps74 is mapped onto the 

surface of the tetramer, as in Fig. 10. The top, convex surface exhibits low sequence 

conservation. Amino acids lining a 70 Å × 30 Å cavity in the bottom, concave surface are 

well conserved, and may indicate a protein interaction site. (B) Electrostatic potential (-8 

kT, red, to +8 kT, blue) is shown on the tetramer surface.  Patches of uniform charge 

occur on the top, sides, and bottom. Generated by APBS [13] in Pymol [12]. 
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Figure 12.  Vps74 is monomeric under simple buffer conditions.   

Samples of Vps74 at the indicated concentrations were analyzed by sedimentation 

velocity analytical ultracentrifugation, and are presented as c(s) distributions.  The peak 

at approximately 2.8 S corresponds well with monomeric Vps74.  Weak monomer-

dimer equilibrium is evidenced by a small 4.6 S peak in 25 μM sample, and a broad 

shoulder to the monomer peak at 50 μM.  The sedimentation of 50 μM Vps74 was 

monitored at 250 nm, and the resulting c(S) data has been adjusted by a factor of 2.1 

for comparison to data collected at 280 nm.  Low S value artifacts have been excluded 

from the plot (see Methods 5.4.1). 
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The β-hairpin plays a key role in formation of the crystallographically-observed Vps74 

tetramer.  Its disruption would be predicted to prevent tetramerization, while leaving the central 

dimer intact.  To test this, we generated a variant of Vps74 lacking the β3/β4 hairpin, 

Vps74Δ(197-208).  In the absence of Ca/EGTA this variant sediments as a monomer (solid red 

curve in Fig. 13).  In the Ca/EGTA buffer that promotes tetramer assembly in full-length Vps74, 

Vps74Δ(197-208) was found to sediment only as a distribution of monomer and dimer, with no 

evidence of tetramer (dashed red curve in Fig. 13).  We also constructed variants, in the context 

of Vps74Δ59, that target amino acids in the peripheral interface.  Vps74Δ59(R120A/F121A) alters 

side chains that form a salt bridge and hydrophobic contacts, while Vps74Δ59(Y274A) alters a 

tyrosine that makes a hydrogen bond as well as van der Waals contacts.  Both peripheral 

interface variants sediment as monomer in the absence of Ca/EGTA, but as monomer and dimer 

in the presence of Ca/EGTA (Fig. 14).  These data confirm that the same interactions that 

stabilize tetramer in the crystal structure are required for tetramer formation in solution. 

Oligomerization in solution is not exclusively dependent Ca/EGTA.  Several divalent 

cations (Zn2+, Mn2+, Co2+, but not Mg2+) drive tetramer or higher order oligomer formation in 

combination with EGTA or EDTA (D. Dersh; not shown).  This argues against a specific 

interaction between Vps74 and metal or chelator, and further suggests that tetramer is stabilized 

by an interaction with the metal ion/chelator complex.   

We asked whether pH influences Vps74 oligomerization.  Vps74 crystals formed at pH 

6.0, whereas the above SV AUC studies were conducted a pH 7.5.  SV AUC experiments in the 

absence of Ca/EGTA yield monomeric distribution of Vps74 from pH 6.0 to 7.5 (Fig. 15).  By 

contrast, in the presence of Ca/EGTA we observe decreased oligomer formation at pH 6.0 

compared to pH 7.5.  Histidine side chains do not make stabilizing contacts in any of the three 

tetramer interfaces, and crystals of tetramer formed at pH 6.0, so it is unlikely that this pH 

difference directly affects the stability of the tetramer interactions.  We have already noted that 

free Ca2+ and EGTA alone do not stimulate tetramer formation.  Thus, the observed pH 

sensitivity further suggests that tetramer stabilization occurs via the Ca/EGTA complex.  The
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Figure 13.  Vps74 forms oligomers in solution in the presence of Ca2+ and EGTA.  

Vps74 and the indicated variants were analyzed by sedimentation velocity analytical 

ultracentrifugation, and are plotted as c(S) distributions to 25 S (A) or truncated to 10 S, 

to magnify the monomer-tetramer scale. Vps74 and Vps74Δ59 are monomeric in simple 

buffer conditions, but redistribute into a monomer/dimer equilibrium with some higher 

species in the presence of 10 mM CaCl2, 10 mM EGTA. By contrast, Vps74Δ(197-208)  

populates a monomer/dimer equilibrium in the presence of Ca/EGTA. 
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Figure 14.  Alterations to amino acids that stabilize the peripheral interface affect 

tetramer formation.   

Vps74Δ59, or variants containing mutations to residues in the peripheral interface, 

were analyzed by sedimentation velocity analytical ultracentrifugation, plotted as c(S) 

distributions.  The sedimentation distribution of Vps74Δ59 shifts from monomeric to 

monomer/tetramer equilibrium in the presence of Ca/EGTA.  Variants 

Vps74Δ59(Y274A) and Vps74Δ59(R120A/F121A) are monomeric in the absence of 

Ca/EGTA, but exist in monomer/dimer equilibrium in its presence. 
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Figure 15.  Vps74 oligomer formation occurs at pH 6.0, but to a lesser extent than 

at pH 7.5.   

Samples of Vps74Δ59 between pH 7.5 and 6.0, with and without 10 mM CaCl2 & 10 mM 

EGTA, were analyzed by sedimentation velocity analytical ultracentrifugation, and are 

plotted as c(S) distributions.  In the absence of Ca/EGTA, Vps74Δ59 sediments as a 

single species.  (The c(S) peak width and height varies, but the area under the curve is 

similar in all samples.)  In the presence of Ca/EGTA at pH 7.5, Vps74Δ59 redistributes 

as monomer and tetramer.  Oligomerization also occurs at pH 6.0, but to a lesser 

extent, populating dimer rather than monomer.  As histidine residues do not stabilize 

any of the observed interfaces, this pH sensitivity is likely due to the pH dependence on 

the chelation of Ca2+ by EGTA. 
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amount of total Ca/EGTA in complex does not vary dramatically between pH 7.5 (99.7% of total, 

or 9.97 mM in this experiment) and pH 6.0 (91.4%, or 9.14 mM) [66], but the protonation state 

and conformation of the Ca/EGTA complex may, either of which may be critical for its interaction 

with Vps74. 

We do not have a conclusive explanation for the effect of Ca/EGTA on Vps74 

tetramerization.  No strong electron density attributable to bound calcium or EGTA was evident 

in the structure, although the presence of such sites cannot be ruled out on the basis of these 

data alone.  Whatever the mechanism of tetramer stabilization, this phenomenon allows us to 

test the effects of tetramer formation on mannosyltransferases binding.  We find that addition of 

Ca/EGTA to the buffer in the GST-binding assay leads to a modest enhancement (approximately 

2-fold) in binding of Vps74 to Kre2-GST (Fig. 16). 

1.2.8 The β-hairpin is required for Vps74 function, suggesting a link between 

function and tetramer formation 

Structural evidence suggests that the tetramer is physiologically relevant.  To determine if 

oligomerization is required for Vps74 function, we asked whether Vps74 variants lacking the 

entire β-hairpin, Vps74Δ(197-208), or the hydrophobic FFLF motif (Fig. 8C), Vps74Δ(201-204), 

can functionally substitute for wild type Vps74 in yeast.  Neither variant rescues the glycosylation 

defect (Fig. 17A) or the Kre2-GFP localization defect (Fig. 17C).  These altered forms also fail to 

bind Kre2-GST (Fig. 17B).  Thus, the hydrophobic β-hairpin is required for Vps74 function, and 

function is correlated with tetramer formation:  solution conditions that promote oligomerization 

enhance the interaction with mannosyltransferases peptides, and Vps74 variants incapable of 

tetramer formation are non-functional in cells. 

Finally, we observe that GFP fusions of Vps74 variants incorporating alterations to the β-

hairpin, Vps74Δ(197-208) and Vps74Δ(201-204), fail to localize to the Golgi and instead adopt a 

cytosolic distribution (Fig. 17D).  This suggests either that the recognition of resident Golgi 

proteins is requisite for Vps74 Golgi localization, or that the β-hairpin is directly involved in 

recognition of Golgi membranes (in fact, both are likely:  see Section 1.3) 
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Figure 16.  Stabilization of tetramer formation by addition of Ca2+/EGTA enhances 

binding to Kre2-GST.   

As in Fig. 3A, Kre2-GST constructs were immobilized to GSH agarose beads at varying 

ratios of Kre2-GST:GST alone.  Beads were incubated with T7-tagged vps74 in 

binding buffer with or without 10 mM CaCl2, 10 mM EGTA.  A ≈ 2-fold enhancement in 

pulled down Vps74 is observed in the presence of Ca/EGTA. 
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Figure 17.  Alterations that disrupt tetramer formation abrogate Vps74 function.  

(A)  35S Cys/Met pulse-chase of vps74Δ cells transformed with the indicated constructs, as 

in Fig. 1A,  Constructs incorporating alterations to the β-hairpin, or a C-terminal GFP 

fusion, do not rescue the glycosylation defect.  (B)  As in Fig. 3B, immobilized Kre2-GST 

fusions were used to pull down T7-tagged Vps74 or altered forms Vps74Δ(201-204) or 

Vps74Δ(197-208) from E. coli lysates.  Lanes marked “In” contain 1% lysates input.  (C)  

The localization of GFP tagged Kre2 was visualized by fluorescence microscopy in vps74Δ 

yeast expressing the indicated forms of Vps74.  Punctate Golgi localization of Kre2 is only 

maintained by wild type Vps74.  (D). The localization of the indicated GFP-Vps74 

constructs expressed in vps74Δ yeast was visualized by fluorescence microscopy.  GFP-

Vps74 variants with alterations to the β-hairpin are cytosolic, rather than Golgi localized. 

(Experiments done by J. Liu, C.S. Wood, C.G. Burd; adapted from [19].) 
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1.3 Vps74 and GOLPH3 bind phosphoinositides, with specificity for PtdIns4P. 

1.3.1 The crystal structure of GOLPH3 exhibits high structural homology with that 

of Vps74 

To better understand the function of the animal homolog of Vps74, GOLPH3, we 

determined its X-ray crystal structure to 2.9 Å resolution (Fig. 18, Table 3).  Crystals of a 

truncated version of GOLPH3 (GOLPH3Δ51) lacking the first 51 amino acids (approximately 

equivalent to the first 59 amino acids of Vps74, which are disordered in the Vps74 crystal 

structure and generally poorly conserved throughout fungi and animals; Fig. 9) were grown from 

a solution containing 0.9 M ammonium sulfate and, as discussed in detail below, contain a 

bound sulfate ion that suggests the location of a PtdIns4P binding site (see Section 1.3.2). 

The GOLPH3 structure exhibits strong structural homology to that of Vps74 (Figs. 19 & 20) as 

expected based on sequence similarity, with an overall backbone atom root mean square 

deviation (RMSD) between GOLPH3 and Vps74 of ≈ 1.0 Å.  Four parallel α-helices (α1, α2, α8, 

α12) are surrounded by 6 roughly orthogonal amphipathic helices, and, as observed in Vps74, a 

β-hairpin motif (β3/β4) projects away from this helical core. The major differences between 

GOLPH3 and Vps74 lie on the face opposite this β-hairpin.  In Vps74 the α7/α8 loop and the 

region between α10 and α12 are longer than in GOLPH3 (Figs. 9 & 20). These longer loops, 

along with helix α11, pack tightly against the core of Vps74 on one face of the protein, creating a 

surface that is much less positively charged than the analogous surface of GOLPH3 (Figs. 20 & 

22).  GOLPH3Δ51 is a monomer in the crystallographic asymmetric unit, but the β-hairpin of one 

molecule makes an interaction with a symmetry related molecule that is equivalent to the “β-

hairpin interface” observed in the Vps74 tetramer (Fig. 8, Table 4).  

An intermolecular disulfide bond (C84-C108; Fig. 21) links symmetry related 

GOLPH3Δ51 molecules.  Purified GOLPH3Δ51 was found to precipitate in the absence of 

reducing agent, and this precipitate re-dissolved upon the addition of reducing agent.  Similarly, 

crystal formation was oxidation dependent, indicating that the observed disulfide bonds are
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Figure 18.  Crystals of GOLPH3Δ51.   

Representative crystals of GOLPH3Δ51.  200 × 200 × 200 μm crystals grew in 0.9 M 

(NH4)2SO4, 0.1 M MES, pH 6.0. 

500 µM

500 µM
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Table 3. GOLPH3 Crystallographic Statistics 

 GOLPH3Δ51 
(Se-met)a 

GOLPH3Δ51 
(native) 

Data Collection Statisticsb   

Space group I432 I432 

Unique cell dimensions a, b , c = 174.4 Å a, b , c = 174.6 Å 

X-ray source APS 23-ID-B APS 23-ID-B 

Wavelength 0.97951 Å 1.07221 

Resolution limit 2.9 Å 2.3 Å 

Observed/Unique 36,448/10,180 175,831/19,854 

Redundancy 3.6 fold 8.9 fold 

Completeness (%) 98.3 (99.6) 97.1 (78.2) 

Rsym
c 0.133 (0.586) 0.060 (0.619) 

<I/σ> 11.9 (2.4) 36.4 (3.2) 

Refinement Statistics   

Resolution limits 50-2.9 Å 50-2.3 Å 

No. reflections/No. test set 10,152/492 18,800/1013 

R factor (Rfree)d 0.213 (0.266) 0.211 (0.266) 

Model   

Protein aa 59-297 aa 57-297 

 6 sulfate ions 6 sulfate ions 

 9 water molecules 109 water molecules 

Total number of atoms 1,939 2050 

RMSD bond lengths (Å) 0.017 0.016 

RMSD bond angles (º) 1.779 1.655 

a.  Native data was collected on a selenomethionine derivitized protein crystal. 

b.  Numbers in parenthesis refer to last resolution shell. 

c.  Rsym = ∑|Ih-<Ih>|/∑Ih, where <Ih> = average intensity over symmetry equivalent measurements. 

d.  R factor = ∑|Fo-Fc|/∑Fo, where summation is over data used in the refinement; Rfree includes only 5% of the data 
excluded from the refinement. 
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Figure 19.  The structure of GOLPH3 indicates a putative PtdIns4P binding site.

(A) Orthogonal views of GOLPH3.  Six amphipathic α-helices (red) surround four core 

α-helices (gold). A β-hairpin (β3/β4, cyan) projects away from the helical domain, as in 

Vps74 [19]. A well ordered sulfate is shown as ball-and-stick. (B)  A β-hairpin 

interaction between crystallographic dimers of GOLPH3 (left) is nearly identical to an 

interaction stabilizing the Vps74 tetramer (right). The two additional subunits of the 

tetramer are shown (gold, cyan). (C) Magnified view of the sulfate binding pocket 

(boxed in B) of GOLPH3, and the homologous region of Vps74, with sulfate and 

surrounding amino acids shown as sticks. A water molecule occupies a similar position 

to the sulfate ion in GOLPH3. K178 is disordered in Vps74. Underlined amino acids 

were altered to alanine (see Section 1.3.5). 
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Figure 20.  Comparison of GOLPH3 and Vps74 structures.

Orthogonal cartoon views of GOLPH3 (A) and a single subunit of Vps74 (B) (PDB ID 2ZIH, 

chain A).  GOLPH3 and Vps74 share homologous α-helical folds.  The four core 

hydrophobic helices (gold) are conserved in GOLPH3, as are most of the peripheral 

amphipathic helices (red).  Helix α11 and the α10/α11 loop are absent in GOLPH3. 



 38   

responsible for stabilizing the crystal form.  The existence of these bonds prevents formation of 

interactions in the GOLPH3 crystal analogous to those observed in the Vps74 tetramer.  

GOLPH3 C84 is homologous to Vps74 S91, and in the central Vps74 subunit S91 lies near the β-

hairpin.  The presence of a disulfide bound molecule at this position sterically prevents both the 

“inner” and “peripheral” interactions.  However, the absence of these interactions in the 

GOLPH3Δ51 crystal does not preclude their formation by GOLPH3 under physiological 

conditions. 

1.3.2 The GOLPH3 structure reveals a conserved positively charged pocket, 

occupied by a bound sulfate ion 

Our studies of Vps74 reveal a direct but relatively weak interaction between Vps74 and 

the cytosolic regions of mannosyltransferase enzymes, which may not be sufficient to account 

for the robust localization of Vps74 and GOLPH3 to the Golgi apparatus.  Thus we considered 

the possibility that these proteins recognize other components enriched in the Golgi, including 

the phospholipid PtdIns4P.  The structure of Vps74 provides no specific indication of a 

phospholipid binding site.  By contrast, several ordered sulfate ions from the crystallization 

solution are modeled in the final refined GOLPH3Δ51 structure.  Crystallographically bound 

anions have served as indicators for the presence of lipid headgroup binding sites in several 

instances, including the p47phox PX domain [81] and the Hrs FYVE domain [82].  We asked 

whether this may also be true in GOLPH3.  Of the six observed anions, the most well ordered 

and the one making the most extensive contacts with GOLPH3 (151 Å2 buried surface area, 

compared to 95 – 125 Å2 buried by the other sulfates) lies in a positively charged pocket formed 

by the α1-α2 loop, α2, and α5 (Fig. 19C & Fig. 22).  This pocket is also observed in the S. 

cerevisiae Vps74 structure (Figs. 19C & 24) and the amino acids lining this pocket are well 

conserved throughout fungal and animal lineages (Fig. 9 & Fig. 23).  The sulfate in the GOLPH3 

pocket is stabilized by electrostatic interactions with R174, hydrogen bonds to backbone atoms 

of residues N172 and V173, and indirect hydrogen bonds to α5 via an ordered water molecule 

(Fig. 19). 
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Table 4. Details of the GOLPH3 β-hairpin interaction  

 β-hairpin interaction 

Number of Hydrogen bonds (≤ 3.5 Å) 6

Salt bridge interactions 2

Area occluded from solventa (Å2) 1095 Å2

  Polar area (% of total) 312 Å2 (28 %)

  Apolar area (% of total) 783 Å2 (72 %)

Shape complementarityb 0.68

 

a.  Average area occluded on each subunit. 

b.  Shape complementarity calculated with the SC module in CCP4 [8, 83]. 

 



 40   

Figure 21.  Disulfide bonds between symmetry related GOLPH3 molecules stabilize 

the crystal structure. 

(A)  Cartoons show GOLPH3 molecules related by crystallographic four-fold symmetry.  

Disulfide bonds (sticks, and indicated by dashed circles) link each GOLPH3 molecule (for 

example, the colored copy) to two symmetry related copies (gray).  Four GOLPH3 

molecules form a single covalently linked unit.  Additional molecules are related by a two-

fold symmetric β-hairpin interaction (Fig. 19B) and minor crystallographic contacts.  (B)  A 

detailed view of the disulfide bond between C84 of one GOLPH3 molecule (colored) to a 

C108 on a symmetry related copy.  GOLPH3 is a cytosolic molecule, so these disulfide 

bonds are not expected to occur physiologically. 
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The features of this basic pocket are reminiscent of the binding sites of some structurally 

characterized phosphoinositide binding modules (Fig. 24).  PLCδ1 specifically binds PtdIns(4,5)P2 

in a basic binding pocket between loops β1-β2 and β3-β4 of its PH domain [84].  Binding is 

stabilized by electrostatic interactions between the inositol phosphates and five basic side 

chains, and by polar contacts with serine and tryptophan residues.  Positively charged pockets 

in the PX domains of SNX3 and p40phox specifically bind PtdIns3P [85, 86], stabilized by 

electrostatic interactions (one or two arginine side chains coordinate the 3-phosphate; a lysine 

interacts with 1-phosphate), by hydrogen bonds, and by van der Waals contacts between a 

conserved tyrosine and the inositol ring.  Specific binding of the EEA1 FYVE domain to PtdIns3P 

is stabilized by the interaction of one arginine side chain with each phosphate, and by polar 

interactions with the inositol ring [87].  The GOLPH3 and Vps74 pocket includes three conserved 

basic residues (R90, R171, and R174 in GOLPH3) that may interact with the 1- and 4-

phosphates of PtdIns4P, a conserved tryptophan (W81) that may pack against the inositol ring, 

and additional polar side chains that may stabilize the lipid head group (Figs. 19C & 24).  In 

addition there is evidence that membrane insertion of conserved hydrophobic side chains 

contributes to the stability of membrane interactions [85-87].   The GOLPH3/Vps74 pocket is 

situated near the base of the hydrophobic β-hairpin, and near the hydrophobic pocket that 

accepts the tip of the partner β-hairpin to stabilize the β-hairpin interaction.  Hydrophobic side 

chains from the β-hairpin may stabilize lipid binding by projecting into the lipid bilayer. 

We have attempted to determine the crystal structure of phosphoinositide bound to 

GOLPH3Δ51 by soaking and by co-crystallizing soluble short chain phosphoinositides or 

headgroups alone into GOLPH3Δ51 crystals.  Data were collected on GOLPH3Δ51 crystals 

soaked for over two months in a cryo-stabilizing solution containing 0.5 mM di-C4-PtdIns4P.  

These crystals diffracted to a resolution of 2.3 Å (Table 3), but the resulting electron density is 

consistent with a bound sulfate in the proposed PtdIns4P binding pocket, with no evidence of 

lipid headgroup (Fig. 25).  The high concentration of sulfate present in the crystallization buffer 

likely prevents binding of PtdIns4P. 
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Figure 22.  Comparison of the surface electrostatics of GOLPH3 and Vps74 

monomers. 

The surface electrostatic potential of GOLPH3 and Vps74 monomers is shown, on a 

scale of -8 kT (red) to +8 kT (blue).  Crystallographically bound sulfate ions in GOLPH3 

are shown as spheres.  A well ordered sulfate ion lies in a positively charged pocket in 

GOLPH3, near the hydrophobic β-hairpin motif.  This pocket is conserved in Vps74.  The 

face opposite the pocket (rightmost orientation) is less charged in Vps74 than in 

GOLPH3, due largely to the amino acid composition of α11 and the α10/α11 loop, which 

are absent in GOLPH3.  Electrostatic surfaces were generated by the Adaptive Poisson-

Boltzmann Solver (APBS) [13] in Pymol [12]. 
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Figure 23.  Conservation of GOLPH3 surface resides.

Surface representations of the GOLPH3 crystallographic monomer (A) and β-hairpin 

dimer (B) are shown.  Sequence conservation, based on a multiple sequence alignment 

between animal homologs of GOLPH3, is color coded by residue on a scale of green 

(most conserved) to white (least conserved).  Residues involved in the β-hairpin 

interaction and the nearby sulfate binding pocket exhibit a high degree of conservation. 
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Figure 24.  The GOLPH3 and Vps74 putative PtdIns4P binding pocket shares 

features with structurally characterized PI binding motifs. 

Detailed views of the putative PtdIns4P binding pockets of GOLPH3 and of Vps74 are 

shown, as well as of the phosphoinositide binding pockets of PLCδ1 PH domain (PDB ID: 

1MAI), SNX3 PX domain (1OCU), p40phox PX domain (1H6H), and EEA1 FYVE domain 

(1JOC), bound to their respective ligands.  Ligands are represented as ball and sticks, 

with carbon atoms colored purple.  A bound sulfate occupies the center of the pocket in 

GOLPH3, and an ordered water molecule occupies approximately the same position in 

Vps74.   
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1.3.3 Disruption of a PtdIns kinase and PtdIns phosphatase affect 

Vps74/GOLPH3 localization 

The existence of a well conserved positively charged surface cavity occupied by sulfate 

in the GOLPH3 crystal structure suggests that GOLPH3 may bind phosphoinositides (PIs).  

Further evidence for this interaction comes from a yeast screen to identify gene deletions or 

temperature-conditional alleles that cause defects in the localization of GFP-Vps74. 

In wild type yeast, Vps74 is localized primarily to the Golgi apparatus, with some 

occurrence in the cytosol.  GOLPH3, which can functionally substitute for Vps74 in yeast, 

localizes even more robustly to Golgi.  In the pik1-83 and frq1-1 temperature-conditional yeast 

strains, after incubation at the restrictive temperature both GFP-Vps74 and GFP-GOLPH3 lose 

their Golgi localization and adopt a cytosolic and nuclear distribution (Fig. 26A).  PIK1 encodes 

the only Golgi associated PtdIns 4-kinase in yeast, and FRQ1 encodes a Golgi-localized 

calcium-binding protein that binds and activates Pik1 [88].  Disruptions in Stt4 and Lsb6, the 

other two PtdIns 4-kinases in yeast, do not alter Vps74 localization (data not shown).  Thus, 

GOLPH3 and Vps74 Golgi localization in yeast requires a functioning Golgi PtdIns 4-kinase.  This 

dependence may indicate a direct interaction between Vps74/GOLPH3 and Pik1/Frq1, or an 

interaction between Vps74/GOLPH3 and the product of this enzyme, PtdIns4P. 

To distinguish between these possibilities, we assessed the distribution of Vps74 and 

GOLPH3 in sac1Δ yeast, which lack the Golgi and ER localized Sac1 phosphatidylinositol 

phosphatase.  Sac1 dephosphorylates several phosphoinositide substrates, but Golgi localized 

Sac1 is thought to function largely as a PtdIns4P phosphatase [89, 90].  Deletion or mutation of 

sac1 results in a several fold increase in PtdIns4P levels and an enrichment of PtdIns4P in the 

ER [89].  In sac1Δ cells, Vps74 and GOLPH3 localize to the ER as well as to the Golgi (Fig. 26B).  

Thus, Vps74 and GOLPH3 adopt a cytosolic distribution in yeast deficient in the synthesis of 

Golgi PtdIns4P, and localize to the ER when PtdIns4P is enriched in this organelle.  Together 

these data strongly suggest that Vps74 and GOLPH3 specifically recognize PtdIns4P. 
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Figure 25.  Electron density surrounding the ordered sulfate in GOLPH3. 

Crystals of GOLPH3Δ51 were soaked with 0.5 mM diC4-PtdIns4P. Stick representations 

are shown of the PI binding site in the resulting model, along with 1.5 σ 2fO-fC maps 

calculated with (A) and without (B) a bound sulfate ion and neighboring water molecules; 

a map after density modification by DM [8], and a simulated annealing omit map by CNS 

calculated without the sulfate ion and neighboring waters [27].  The central region of 

electron density corresponds well with a sulfate ion or an inositol phosphate.  However, 

no electron density is observed that correspond well with the inositol ring of PtdIns4P.  

View is approximately equivalent to that in Fig. 19C. 
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Figure 26.  Golgi localization of Vps74 and GOLPH3 is altered upon disruption of 

the Pik1/Frq1 PtdIns 4-kinase or the Sac1 lipid phosphatase. 

(A)  Fluorescence microscopy showing the localization of GFP-tagged Vps74 and 

GOLPH3 in wild type yeast, as well as pik1 and frq1 temperature-conditional strains, at 

permissive (26°C) and restrictive (37°C) temperatures. Grayscale and false color images 

(yellow indicating highest intensity) are shown.  At the restrictive temperature in pik1 and 

frq1 mutants, Vps74 and GOLPH3 distribution is cytosolic rather than Golgi associated.  

(B)  Fluorescence microscopy showing the localization of GFP tagged wild type 

GOLPH3, Vps74, and Vps74Δ(197-208) is shown in wild type yeast, and strains carrying 

mutations or deletions of sac1.  Disruption of sac1 drives GOLPH3 and Vps74 to the ER, 

in addition to the Golgi apparatus. 

(From work by C.S. Wood and C.G. Burd.  Adapted from [28].) 
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1.3.4 Vps74 and GOLPH3 bind PtdIns4P in lipid binding assays 

Yeast localization data, in conjunction with structural evidence, argue that Vps74 and 

GOLPH3 directly bind PtdIns4P.  Surface plasmon resonance (SPR; Biacore) was used to assay 

the interaction between purified Vps74 or GOLPH3 with several PIs.  Vesicles composed of 

dioleoylphosphatidylcholine (DOPC) with or without 3 % (mole/mole) PtdIns3P, PtdIns4P, 

PtdIns5P, or PtdIns(4,5)P2 were applied to an L1 Biacore sensorchip [91].  Equilibrium binding of 

Vps74 and GOLPH3 to these lipid surfaces was assayed (Fig. 27) and dissociation constants (KD 

values) were determined (Table 5). 

Vps74 binds to PtdIns4P with a KD of 8.9 ± 0.3 μM, an affinity at least fivefold tighter than 

to the other lipid surfaces tested.  (The exact selectivity is uncertain due to the upper limit in KD 

determination.)  GOLPH3 binds PtdIns4P with a KD of 2.6 ± 0.2 μM, approximately fourfold 

tighter than Vps74.  This is consistent with the more robust targeting of GOLPH3 to Golgi in 

yeast (see Section 1.3.3).  GOLPH3 likely exhibits poorer selectivity for PtdIns4P, having a 

substantial KD of 10.2 ± 0.5 μM for the interaction with PtdIns3P surfaces, and affinities of 

approximately 25 μM for PtdIns5P and PtdIns(4,5)P2 surfaces.  Vps74 and GOLPH3 affinities for 

PtdIns4P lipid surfaces are similar to those of proteins targeted to the Golgi via PH domains 

(OSBP, FAPP1, Osh2), exhibiting KD values from 1 to 6 μM [92, 93].   

1.3.5 Mutations to the Vps74 or GOLPH3 residues lining the charged pocket 

abolish lipid binding, localization, and function 

To test whether the amino acids lining the GOLPH3 and Vps74 sulfate binding pocket 

are important for PtdIns4P binding, in vivo targeting, and the function of Vps74 and GOLPH3, 

we created variants with alanine substituted at two of the amino acids underlined in Fig. 19C: 

Vps74(W88A/R87A) and Vps74(K178A/R181A) in Vps74; GOLPH3(W81A/R90A) and 

GOLPH3(R171A/R174A) in GOLPH3.  In yeast and in E. coli these variants are expressed in 

equivalent amounts compared to wild-type GFP-tagged Vps74 and GOLPH3, indicating that 

these substitutions do not grossly affect the stability of the proteins (not shown).  Circular
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Figure 27.  GOLPH3 and Vps74 specifically bind PtdIns4P.  

Biacore SPR of GOLPH3 (A) and Vps74 (B) binding to phosphoinositides.  Samples of 

the indicated concentration of GOLPH3 or Vps74 were passed over a L1 chip (Biacore) 

prepared with 3% (mole/mole) of the indicated phosphoinositide in a DOPC background.  

The steady-state SPR response for a representative dataset, corrected for background 

binding to a DOPC surface, is plotted against protein concentration.  The inset (B) shows 

data for 50 μM Vps74.  Curves were generated by a fit to a simple one-site binding 

equation.  KD values from at least three independent experiments are listed in Table 5. 
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Table 5. KD values for the binding of Vps74 and GOLPH3 to phosphoinositides, determined 

from SPR. 

 

 PtdIns4P PtdIns3P PtdIns5P PtdIns(4,5)P2 

Vps74 8.9 ± 0.3 μM > 50 μM > 50 μM > 50 μM 

GOLPH3 2.6 ± 0.2 μM 10.2 ± 0.5 μM ≈ 25  μM ≈ 25  μM 
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dichroism (CD) spectroscopy of Vps74 variants further confirms that the alterations do not 

grossly destabilize the protein (Fig. 28).  In SPR-based assays (Fig. 29), none of the Vps74 or 

GOLPH3 mutants detectably binds PtdIns4P, or any other phosphoinositide.  Moreover, when 

expressed in vps74Δ and sac1Δ cells, the mutant forms of Vps74 and GOLPH3 do not localize 

to the Golgi or to the ER and are observed only in the cytosol and nucleus (Fig. 30).  Importantly, 

the function of Vps74 is also abolished by these mutations:  in cells expressing each mutant 

form as the sole source of Vps74, a GFP-tagged form of a medial Golgi mannosyltransferase, 

Kre2-GFP, is not efficiently retained in the Golgi apparatus, just as in vps74Δ cells (Fig. 30).  

These results firmly establish that the sulfate binding pocket originally identified in the X-ray 

crystal structure of human GOLPH3 is critical for PtdIns4P binding and Golgi targeting of 

GOLPH3 and Vps74, and they demonstrate that PtdIns4P binding is essential for the function of 

Vps74 in Golgi homeostasis. 

Additionally, we note that deletion of the β-hairpin, which is required for Vps74 

oligomerization and function [19], abolishes binding to PtdInsP4 (Fig. 29).  This raises the 

possibility that hydrophobic side chains in the β-hairpin may stabilize membrane binding by 

insertion into the hydrophobic milieu, as has been suggested for binding of PX and FYVE 

domain to PtdIns3P containing membranes [85, 86]. 

 

1.4 Vps74/GOLPH3 homologs among eukaryotes and bacteria 

1.4.1 Homologs occur in unikont eukaryotes 

We show that Vps74 and GOLPH3 function to maintain the spatial organization of Golgi 

proteins, and that this occurs in part through recognition of PtdIns4P at Golgi membranes.  

Sequence searches by BLAST [94] reveal one or more GOLPH3/Vps74 homologs in most 

unikonts [95], including animals, choanozoa (protists closely related to animals; a homolog 

occurs in Monosiga brevicollis), fungi, and amoebozoa (ameboid protists, including slime molds; 

a homolog occurs in the slime mold Dictyostelium discoideum).  These proteins share a high
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Figure 28.  Circular dichroism spectra of Vps74 PtdIns4P binding pocket mutants.

Circular dichroism spectra at 37°C of wild type and the indicated Vps74 variants is 

shown.  Samples contained 1.5 μM protein in 5 mM sodium borate, 150 mM sodium 

fluoride, pH 7.5.  Wild type and mutant Vps74 are predominantly α-helical, and the point 

mutations have introduced no gross changes in secondary structure.  Wild type Vps74 

is untagged (H6-Vps74 after TEV digestion), while Vps74(W88A/R87A) and 

Vps74(K178A/R181A) contain N-terminal T7 and hexahistidine tags.  This additional 

unstructured region in the mutants accounts for the slight overall decrease in secondary 

structure.  GOLPH3 was not analyzed by CD due to poor solubility in UV transparent 

buffers at 37°C. 
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Figure 29.  Equilibrium binding of GOLPH3 and Vps74 variants to phosphoinositide 

surfaces. 

Equilibrium SPR response values are plotted (corrected for background binding to DOPC 

surfaces) from the interaction of a single concentration of the indicated protein with lipid 

surfaces incorporating 3% (mole/mole in a DOPC background) of the indicated 

phosphoinositides.  SNX3 and PLCδ1 controls have specificity for PtdIns3P and 

PtdIns(4,5)P2 surfaces, respectively.  Alteration of amino acids lining the sulfate binding 

pocket abolishes the interaction with lipid surfaces, as does disruption of the conserved 

β-hairpin.  Control proteins were assayed at 25 μM; 50 μM samples were used for all 

other proteins. 
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Figure 30.  Disruption residues surrounding the PtdIns4P binding pocket abolishes 

GOLPH3 and Vps74 function. 

(A)  The localization of the indicated GFP-tagged variants of Vps74 (left legend) is shown 

by confocal microscopy in vps74Δ or sac1Δ deletion strains.  (B)  The localization of 

Kre2-GFP is shown by confocal microscopy in vps74Δ cells transfected with the 

indicated forms of Vps74 (left legend).  (C)  The localization of the indicated GFP-tagged 

GOLPH3 variants (left legend) is shown by fluorescent microscopy in the vps74Δ or 

sac1Δ deletion strains.  GFP-GOLPH3 and GFP-Vps74 incorporating alterations to 

pocket residues lose Golgi localization and are found in the cytosol in vps74Δ and sac1Δ 

cells.  Golgi localization of Kre2-GFP is also lost in cells expressing altered forms of 

Vps74, and Kre2-GFP accumulates in the vacuole. 

 

(From work by C.S. Wood and C.G. Burd.  Adapted from [28].) 
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degree of sequence identity (38% between S. cerivisciae Vps74 and H. sapiens GOLPH3; Fig. 

31), which argues that they serve an important cellular function.  However, homologs do not 

occur in all eukaryotes; notably, none has been identified in plants.  (At the time of writing, we 

note that a hypothetical Zea maize gene product, GenBank ID: ACF86141.1, has significant 

sequence similarity to Vps74.  However, the sequence of this protein is identical to that of Vps74 

from the fungal plant pathogen, Gibberella zeae.  This Z. maize entry is likely a sequencing 

artifact.)  Eukaryotes lacking Vps74/GOLPH3 homologs possess functioning Golgi organelles, of 

similar topology and composition to those of unikonts. 

Curiously, we have also identified Vps74/GOLPH3 homologs among some prokaryotes.  

We term these proteins Bhovs (bacterial homologs of Vps74).  A BLAST search against 

prokaryotic sequences using S. cerevisaie Vps74 as a search query yields multiple hits with 

expectation scores (e-scores) below 1×10-4.  Bhovs occur in at least seven prokaryotic genera, 

encompassing Gram-positive and -negative species across five bacterial phyla, in species that 

occupy diverse environments. 

Bhovs are not present in all bacteria (for instance, no homolog is detected in E. coli), and none 

has been identified in Archaea, which are thought to be more closely related to eukaryotes.  This 

discontinuous distribution of homologs across distantly related organisms suggests that 

Vps74/GOLPH3 and Bhov proteins are related by horizontal gene transfer (i.e., xenologs).  Bhov 

proteins are more similar to one another than to their eukaryotic homologs and occur in free 

living bacteria that have no special association with eukaryotes.  This suggests that eukaryotic 

Vps74/GOLPH3 arose from Bhov, rather than vice versa.  

1.4.1 Structure and function of the bacterial homologs of Vps74/GOLPH3 

To our knowledge, no Bhov has been functionally characterized.  However, we are able 

to make some functional predictions based on sequence comparison to eukaryotic homologs 

(Fig. 32).  Key Vps74/GOLPH3 structural features are present in Bhov proteins.  Hydrophobic
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Figure 31.  Sequence similarity among Vps74/GOLPH3 homologs. 

(A)  Matrix of sequence identity values between Vps74/GOLPH3 homologs.  All 

organisms are eukaryotes, with the exception of Idiomarina loihiensis, a proteobacterium.  

Sequence identity has been defined as: (no. identities)/(mean seq. length) [11]. (B)  

Phylogram illustrating the sequence divergence and apparent evolutionary relationship 

between Vps74/GOLPH3 homologs.  Tree arm length is proportional to sequence 

divergence.  I. loihiensis Bhov is basal to both animal and fungal homologs.  GOLPH3 

from the slime mold D. discoideum is relatively divergent, and may serve a different or 

more specialized function in this organism.  The phylogram was generated from a 

multiple sequence alignment using the web-based program, Phylogeny.fr [30]. 
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core helices α1, α2, and α8 are well conserved.  The α1/α2 loop and the hydrophobic β-hairpin, 

β3/β4, which stabilize oligomer formation, are also conserved.  This suggests that Bhov proteins 

adopt a structurally homologous fold and are able to form β3/β4 hairpin mediated dimers. 

By contrast, Bhovs lack the unstructured ≈ 60 amino acid N-terminal region of Vps74 

and GOLPH3, suggesting that this region developed only in ancestral eukaryotes.  Bhovs also 

likely lack a PI binding pocket.  Two residues lining the PtdIns4P binding pocket in Vps74, W88 

and R97, are clearly not conserved in Bhovs.  The degree of conservation of the remaining 

residues lining this pocket (Vps74 amino acids 178 – 182) is less apparent, but we observe that 

these residues lie in a less well conserved region.  This is not surprising, given the general 

absence of PI phospholipids in bacteria [96]. 

We have cloned and purified Bhov from the marine gammaproteobacterium, Idiomarina 

loihiensis (a kind gift from Dr. Maqsudul Alam, University of Hawaii at Manoa).  Size exclusion 

chromatography reveals that I. loihiensis Bhov forms large but soluble aggregates in solution at 

pH 7.5 and 150 mM NaCl.  Biacore studies indicate that this protein does not bind to PtdIns3P, 

PtdIns4P, PtdIns5P, or PtdIns4,5P2 (data not shown). 
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Figure 32.  Multiple sequence alignment of GOLPH3, Vps74, and selected Bhov 

homologs. 

A multiple sequence alignment shows sequence homology between animal GOLPH3, 

fungal Vps74, and several bacterial Bhov homologs.  Bacterial phyla are shown (lower 

left).  Vps74 secondary structure elements are indicated, as are the conserved residues 

lining the GOLPH3/Vps74 PtdIns4P binding pocket.  Secondary structure is generally 

conserved across homologs, while the residues around the PtdIns4P are not conserved 

in bacteria. The alignment was generated by ClustalW [1, 4] and manually optimized. 
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2  Discussion of Vps74 and GOLPH3 data 

2.1 Fungal Vps74 

2.1.1 The function of Vps74 in yeast 

Vps74 is required for the proper retrograde retrieval and Golgi localization of yeast 

mannosyltransferases.  This requirement is consistent with a role as an adaptor protein, linking 

Golgi enzymes to retrograde trafficking machinery.  To fulfill this role, Vps74 must (1) interact 

with cargo, (2) bind to retrograde trafficking components, (3) recognize Golgi membranes, and 

(4) associate with one or more of these elements in a regulated/reversible fashion.  There is 

evidence that Vps74 possessed each of these characteristics. 

Vps74 co-localizes with Golgi mannosyltransferases in vivo, and directly binds the 

cytosolic N-terminal regions of these enzymes in solution [19, 45].  Alanine scanning on the N-

terminal cytosolic portion of yeast mannosyltransferases has revealed a loosely 

conservedconsensus sequence that is required for interaction with Vps74, and for the proper 

Golgi localization of these enzymes [45].  This sequence is composed of hydrophobic and basic 

residues, in the form of (F/L)-(L/I/V)-X-X-(R/K) [45].  Disruptions to this recognition sequence or 

alterations to key regions of Vps74 abolish the in vitro interaction between these proteins, and 

lead to mislocalization of these enzymes [19, 45].  Recognition of this cytosolic signal sequence 

by Vps74 fulfills the first of the above criteria. 

We have identified surface features of the Vps74 tetramer that suggest an interaction 

with a protein binding partner.  The tetramer forms a 70 Å wide, 30 Å deep cavity lined with well 

conserved amino acids (Fig. 11), which is distinct from the PtdIns4P binding pocket.  This cavity 

seems larger than required to bind a ≈ 10 amino acid retention motif, and may instead interact 

with conserved components of retrograde trafficking complexes.  We observe other regions of 

amino acid conservation or uniform charge, as well, all of which are candidate interaction 

surfaces (Fig. 11).  Additionally, several reports have identified interactions between Vps74 and 

retrieval proteins in vitro.  Tu et al. have shown in pulldown experiments that Vps74 interacts 

with COPI coatomer subunits Ret1, Ret2, Sec21, Sec26, Sec27, and Sec28 [45].  Scott et al. 
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report a two-hybrid assay interaction between GOLPH3 and human Vps35, a retromer complex 

component [62].  These interactions satisfy the second criterion above. 

We and others have noted that Vps74 and GOLPH3 specifically bind PtdIns4P [28, 61], 

the major PI component of Golgi membranes [48].  We hypothesize that this interaction permits 

Vps74 to recognize Golgi membranes as the subcellular destination of cargo proteins (fulfilling 

the third of the above criteria).  However, the relatively weak affinities of Vps74 and GOLPH3 for 

PtdIns4P (≈ 8.9 and 2.6 μM, respectively) are insufficient to account for the robust Golgi 

targeting observed in cells.   Additionally, PtdIns4P recognition alone cannot explain the 

specificity of this localization, as this PI also occurs in the plasma membrane [48], to which these 

proteins do not localize.  (The problem is exacerbated for GOLPH3, which exhibits some affinity 

to endosomally enriched PtdIns3P. [48])  Thus, Golgi localization by Vps74/GOLPH3 likely 

involves simultaneous detection of several Golgi markers, including PtdIns4P, abundant cargo 

proteins, and other Golgi residents.  Coincidence detection has been proposed to account for 

the specificity of other proteins with PI recognition motifs [47], including p47phox [81] and 

oxysterol binding protein (OSBP) [93]. 

As an adaptor protein, Vps74 must maintain at least a small cytosolic pool in order to 

recognize mislocalized cargo.  We hypothesize that this is accomplished by regulated, dynamic 

interactions between Vps74 and cellular components (which would address the final of the 

above criteria).  This is supported by evidence that GOLPH3 dynamically associates with the 

Golgi in vivo in a nucleotide dependent fashion [69].  Structural observations also indicate 

opportunities for regulation.  A potential phosphorylation site exists in the α1/α2 loop [19], which 

stabilizes tetramer formation.  Also, the unstructured N-terminal region is not required for Golgi 

localization or tetramer formation [19], and may well serve a regulatory role.  We observe that 

Vps74 is monomeric under most solution conditions, suggesting that tetramer formation in vivo 

must be stabilized by a protein partner.  Furthermore, it seems unlikely that tetrameric Vps74 

binds PtdIns4P, as the binding pocket is occluded in the Vps74 tetramer, and the hydrophobic 

β-hairpin may be required to stabilize lipid binding via membrane insertion.   
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Thus, there is strong evidence that Vps74 functions as an adaptor molecule in fungi, 

linking a subset of resident Golgi proteins to COPI and retromer retrograde trafficking 

machinery.  It is curious that pulldown interactions have been observed with COPI [45], as the 

coatomer is typically characterized as mediating Golgi-to-ER retrieval [40].  Vps74 may serve to 

extend the functionality of COPI vesicles, directing trafficking of proteins to the Golgi via a 

retention motif distinct from typical COPI sorting signals [97].  This hypothesis is supported by 

the observation that Sac1 disruption results in accumulation of PtdIns4P in the ER, along with 

mislocalization of Vps74 and mannosyltransferases to this organelle (Fig. 26). 

Our work with Vps74 has led to several key questions.  Does GOLPH3 recognize 

specific retrograde cargo in animals?  (The family of fungal α1,2-mannosyltransferases 

associated with Vps74 is absent in animals.)  Under what conditions does Vps74/GOLPH3 

interact with retrograde trafficking components, and what are the structural details of these 

interactions?  Finally, and reflecting the greatest gap in our current understanding:  how are 

these proteins regulated in cells?  Further investigation is clearly required to address these 

questions.   

2.1.2 Tetramer formation by Vps74 

We show that Vps74 forms tetramer, and possibly higher order oligomers, in the crystal 

structure and in solution.  Oligomer formation in solution is driven by millimolar mixtures of 

various divalent metal ions and either EGTA or EDTA.  The molecular basis for this phenomenon 

is not clear.  There is no crystallographic evidence that metal ions or chelator are bound in the 

Vps74 complex, and oligomer formation in solution occurs with multiple divalent metal ions and 

with the structurally similar chelators, EGTA and EDTA.  Thus, it is unlikely that tetramer 

stabilization is due to the binding of a specific metal ion, or to the chelation of an ion purified 

along with the protein.  Rather, we hypothesize that the entire chelated metal complex weakly 

interacts with Vps74 such that it stabilizes tetramer and alters monomer/tetramer equilibrium.  

Given an estimated KD of oligomerization of ≈ 1 mM in the absence of Ca/EGTA and ≈ 10 μM in 

its presence (see Section 1.2.7), Ca/EGTA stabilizes oligomer formation by only ≈ 2.7 kcal/mol, 
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or the equivalent of about two hydrogen bonds [98, 99].  This is consistent with a relatively weak 

association of Ca/EGTA complex and Vps74 tetramer.  Even if the effect on tetramer formation is 

a serendipitous artifact rather than a specific interaction with a physiologically relevant cofactor, 

it has allowed us to establish that tetramer formation is correlated with function. 

Our work suggests a relationship between formation of the Vps74/GOLPH3 tetramer 

and binding to membranes, cargo, and other cellular components, although the nature of this 

relationship remains unclear.  We show that the presence of Ca/EGTA enhances the pulldown of 

purified Vps74 by the cytosolic region of Kre2 (Fig. 16).  This may indicate that the tetrameric 

species is specifically interacts with Kre2; alternatively, this effect may be a consequence of 

avidity.  The presence of a conserved cavity in the tetramer structure suggests that tetramer 

formation is required to interact with protein partners.  However, occlusion of PtdIns4P binding 

sites in the tetramer suggests that this species cannot bind membranes. 

Additionally, we note that a conformational change likely accompanies the transition 

between monomeric to oligomeric states.  The subunit conformation in the Vps74 and GOLPH3 

crystal structures involves the projection of the hydrophobic β-hairpin away from the bulk of the 

helical domain.  To exist as a soluble monomer, we predict that the β-hairpin packs against the 

protein surface, minimizing exposed hydrophobic surface area.  The α1/α2 loop at the base of 

the β-hairpin may also change conformation to accommodate the hydrophobic side chains.   

Although our current understanding of Vps74 function is limited, the data presented here 

allows us to propose an initial model for the function of this protein in cells.  We suggest that, in 

the absence of interaction partners, Vps74 exists as a monomer in the cytosol and adopts a 

conformation (not yet observed crystallographically) in which the β3/β4 hairpin packs against the 

helical core.  Interactions with retrograde trafficking elements in downstream trafficking 

compartments promotes tetramer (or higher order oligomer) formation, which in turn strengthens 

interactions with the cytosolic components of mislocalized cargo.  Vps74 serves as an adaptor 

protein during transit.  Vps74 recognizes the destination compartment by virtue of PtdIns4P 

levels.  Tetramer subsequently dissociates in favor of monomeric association with PtdIns4P 
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containing membranes.  We anticipate that post-translational modifications will be identified that 

regulate various aspects of Vps74 activity.  Future work will be required to test these hypotheses 

and better understand the molecular details of Vps74 function in fungi. 

 

2.2 Animal GOLPH3 

2.2.1 The function of GOLPH3 in animals 

Several lines of evidence indicate that GOLPH3 has similar functionality to Vps74.  

GOLPH3 and Vps74 share high sequence and structural similarity, including regions required for 

Vps74 function (the β-hairpin and the PtdIns4P binding pocket, Fig. 9).  Like Vps74, GOLPH3 is 

Golgi localized and specifically interacts with PtdIns4P.  GOLPH3 interacts with the cytosolic 

regions of mannosyltransferases in solution and can functionally replace Vps74 in yeast [19, 45].  

Knockdown of GOLPH3 in animal cells results in mislocalization of a viral transmembrane 

protein [61].  However, homologs to the fungal α-1,2 mannosyltransferase enzymes trafficked by 

Vps74 in yeast do not occur in animals.  While Golgi proteins with similar topology exist in 

animals, no endogenous cargo proteins have yet been reported for GOLPH3. 

It has also been suggested that GOLPH3 and Vps74 have distinct functions [61].  The 

ability of GOLPH3 to substitute for Vps74 may occur as a consequence of structural 

conservation, rather than functional homology.  Additionally, GOLPH3 plays an important role in 

linking Golgi membranes to the actin cytoskeleton via a direct interaction with Myo18A [61], 

such that knockdown of GOLPH3 alters Golgi topology and affects vesicle budding.  Vps74 is 

not known to perform a similar function in fungi, which lack a Myo18A homolog.   

2.2.2 The role of GOLPH3 in human disease 

Defects in trafficking and glycosylation are associated with several human diseases [44].  

However, no diseases are known to be caused by deletion or mutation of GOLPH3.  It is 

possible that, as is the case with Vps74 in yeast, GOLPH3 function is dispensable for normal 

growth.  Alternatively, severe disruptions in GOLPH3 may be lethal during embryonic 
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development.  Global or conditional knockout studies may address these possibilities and shed 

more light on GOLPH3 function in animals. 

Interestingly, GOLPH3 has been shown to be a bona fide oncogene [62].  Focal 

amplification of the GOLPH3 genomic locus occurs in 56% of lung, and > 30% of ovarian, 

breast, prostate, and melanoma tumors.  GOLPH3 overexpression results in increased cell size 

and activates mTor signaling; conversely, knockdown of endogenous GOLPH3 in tumor cell 

lines decreases cell growth [62].   The specific mechanism linking GOLPH3 activity to mTor is 

unknown, though several potential pathways linking GOLPH3 to cancer have been noted [100].  

GOLPH3 interacts with components of the retromer complex [62], disruption of which is known 

to alter Tor signaling in yeast [101].  Additionally, alteration of retromer activity may affect 

receptor internalization [62].  The oncogenic properties of GOLPH3 may also arise from its 

significant (though weaker) affinity for PtdIns3P (Fig. 27).  Overexpressed GOLPH3 may partially 

localize to membranes enriched in PtdIns3P, incidentally mislocalizing cargo and altering cell 

signaling. 

It may be insightful to investigate the effects on cell growth of GOLPH3 variants lacking 

the ability to bind lipid or to form tetramer.  Along similar lines, it may be possible to increase 

GOLPH3 specificity for PtdIns4P by altering amino acids near the binding pocket, or substituting 

for homologous amino acids from Vps74.  If the oncogenic effects of GOLPH3 require binding to 

PtdIns3P, overexpression of a higher selectivity GOLPH3 variant should not activate mTor 

signaling. 

2.3 The function of Bhov in prokaryotes 

No Bhov has been studied in detail, so the role of these proteins is still speculative.  

Structural features involved in tetramer formation, including the β-hairpin, are conserved in 

bacteria.  Thus, Bhovs are likely capable of oligomer formation and possibly membrane 

association, given the conservation of the hydrophobic β-hairpin.  It seems probable that these 

bacterial proteins serve a completely separate function among prokaryotes than in eukaryotes, 
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and that the PtdIns4P binding and protein sorting functions of Vps74 and GOLPH3 arose only 

eukaryotic organisms. 
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3  Inhibition of the extracellular domain of Epidermal Growth Factor 
Receptor by antibody-based inhibitors 

3.1 Introduction 

3.1.1 ErbB receptor tyrosine kinases 

The epidermal growth factor receptor (EGFR, human EGF receptor 1 [HER1], ErbB 

receptor 1 [ErbB1]) is a plasma membrane receptor tyrosine kinase (RTK) that regulates cell 

growth and proliferation [102].  EGFR is a well characterized oncoprotein in epithelial derived 

cancers, and is an important target of cancer therapeutics [103].  Along with ErbB2/HER2/Neu, 

ErbB3/HER3, and ErbB4/HER4, EGFR is one of four members in humans of the ErbB RTK family 

(named for homology to the avian erythroblastosis virus transforming protein, v-erbB [104]).  

ErbB receptors are type I transmembrane proteins, composed of an amine-terminal extracellular 

ligand binding region, a single transmembrane helix, and an intracellular region that includes a 

juxtamembrane segment, a tyrosine kinase domain, and a carboxy-terminal regulatory segment 

[105]. 

Activation of ErbB receptors results in auto-phosphorylation of tyrosine side chains in 

the C-terminal region by the cytosolic TK domain.  The phosphorylated regulatory region serves 

as a scaffold for the recruitment of a variety of adaptors and signaling enzymes (including Shc, 

PLCγ, PI3K) that contain Src homology 2 (SH2) or phosphotyrosine binding (Ptb) domains, 

resulting in the activation of downstream pathways (MAPK, PKC, Akt, among others) [106, 107].  

ErbB signaling ultimately promotes cell growth, migration, and differentiation, and plays an 

important role in the development of the skin, lungs, pancreas, kidneys, nervous system, and 

other tissue types [102, 108-110]. 

Given their proliferative effects on cell growth, it is perhaps not surprising that aberrant 

activation of ErbB receptors is a frequent component of human cancers.  EGFR involvement 

(through overexpression or mutation) occurs in a significant fraction of cancers of the breast, 

bladder, prostate, kidney, head and neck, as well as gliomas and non small cell lung carcinoma 

(NSCLC) [106, 111, 112].  ErbB2 overexpression occurs in lung, pancreas, and colon cancer, 
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and is particularly prevalent in breast cancer (≥ 30%) [106, 113].  ErbB receptor involvement is 

correlated with tumor malignancy and poor prognosis [114]. 

3.1.2 Activation of ErbB receptors 

ErbB ligands include epidermal growth factor (EGF), transforming growth factor α 

(TGFα), and amphiregulin, which are recognized by EGFR; betacellulin, heparin-binding EGF 

(HB-EGF), and epiregulin, which bind to EGFR and ErbB4; and the neuregulins (NRG1 – 4), 

which bind ErbB3 and/or ErbB4 [106, 110, 115].  No soluble ligand is known for ErbB2.  

Activated ErbB receptors form a range of homo- and heterodimers, which stimulate distinct 

repertoires of downstream signaling pathways [106]. 

ErbB receptors follow the general paradigm of activation observed in most characterized 

RTK members, with some key distinctions.   Ligand binding leads to receptor dimerization, 

thereby driving association and trans-activation of the intracellular tyrosine kinase domains.  For 

several RTKs (vascular endothelial growth factor receptor [VEGFR] and fibroblast growth factor 

receptor [FGFR]) and non-RTK receptors (growth hormone receptor [GHR] and erythropoietin 

receptor [EPOR]) dimerization is stabilized by bivalent binding to ligand (or to two ligands, in the 

case of FGFR binding to FGF and heparin sulfate) [116-119].   By contrast, crystallographic and 

biochemical studies have shown that the ligand binding and dimerization surfaces of ErbB 

receptors are distinct [1, 2]. 

 The extracellular region of human ErbB receptors comprises four domains (Fig. 33).  

Domains I (amino acids 1 – 165) and III (310 – 481) share ≈ 37% sequence similarity [17] and 

adopt a rigid β-helix fold, similar to that of leucine rich repeat domains [120].  Cysteine rich 

domains II (166 – 309) and IV (482 – 618), which share ≈ 17% sequence identity, adopt an 

elongated and somewhat flexible structure of successive disulfide-bonded modules [17].  In the 

absence of ligand, EGFR has been shown by X-ray crystallography and small angle X-ray 

scattering (SAXS) studies to adopt a “tethered” or “autoinhibited” conformation [14, 17] (Fig. 33). 

In the tethered state, domains II and IV interact (burying 922 Å2 total surface area) largely 

through contacts between domain IV and a loop that projects from domain II (residues 240 –   
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Figure 33.  EGFR structure and activation.

Structural models of the EGFR extracellular region are shown above a representation of a 

membrane bilayer.  Structural studies of the EGFR extracellular region reveal two distinct 

states, which are thought to exist in dynamic equilibrium.  A tethered conformation 

predominates in the absence of ligand.  Contacts between domains II and IV partially 

stabilize this conformation, burying dimerization surfaces on domain II, and separating 

domains I and III.  Bound ligand stabilizes an extended conformation, in which tether 

interactions are absent, dimerization surfaces on domain II are exposed, and ligand 

interacts with surfaces on domains I and III.  The extended conformation of EGFR forms 

dimers, stabilized largely by contacts on domain II.  Ligand binding and dimerization are 

cooperative; intermediate states are predicted but have not been experimentally 

observed.  The tethered conformation was generated from PDB 1NQL.  The extended 

conformation and EGFR homodimer were generated from 1IVO, with domain IV modeled 

from the analogous region of 1YY9 chain A.  EGFR transmembrane and intracellular 

regions are not shown in this representation. 
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260) [17].  In this inactive state, the ligand binding surfaces on domains I and III are spatially 

separated by ≈ 50 Å. 

Binding of ligand is associated with a large conformational change in the extracellular 

region (Figs. 33 & 34).  Domains I and II rotate with respect to domains III and IV, bringing about 

an “extended” conformation in which domains I and III bind ligand bivalently (occluding ≈ 1500 

Å2 total surface area) [1, 2].  In this conformation, the autoinhibitory interaction from the tethered 

state is abolished, instead exposing surface area on domains II and IV.  Surfaces on domain II, 

and to a lesser extent on domain IV, symmetrically interact (≈ 1200 Å2 total) to stabilize 

dimerization of “extended” EGFR [1, 2].  Interestingly, the differences between the 

unliganded/tethered and liganded/extended conformations of EGFR involve more than rigid 

body motions.  Contacts between domains II and III in the extended state induce conformational 

changes in domain II, which repositions domain II residues to facilitate dimer-stabilizing 

interactions [21, 105]. 

Structural data on ErbB3 suggests that the extracellular regions of this receptor 

undergoes a similar activation scheme to EGFR, and can adopt tethered and extended 

conformations [14].  Similar behavior is expected for ErbB4.  However, ErbB2 (for which no 

soluble ligand is known) exists only in the extended conformation.  Thus activation of ErbB2 is 

thought to occur exclusively through heterodimerization with the ligand activated forms of other 

ErbB receptors. 

3.1.3 Evidence of additional complexity of EGFR activation 

The crystal structures of the EGFR extracellular region reveal two distinct states: 

extended [1, 2] and tethered [17] (Fig. 33).  These structures suggest a simple model of 

activation in which unliganded receptor exists in the tethered state, bivalent binding of ligand 

stabilizes the extended state, and symmetric dimerization of extended conformation receptors 

promotes association of the TK domains (Figs. 33 & 34A) [121].  However, there is evidence that 

this model cannot account for the full complexity of receptor activation in cells. 
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Figure 34.  Ligand induced dimerization of ErbB receptor extracellular regions.

(A)  Ligand binding stabilizes a conformational change in the EGFR extracellular region, 

favoring homo- and ErbB heterodimer formation.  Tethered monomer [17] and 

homodimers of ligand-bound EGFR in an extended state [1, 2] have been observed 

crystallographically; intermediate states are inferred.  (B)  Tethered structures of ErbB3 

and ErbB4 have been observed [22, 23], and are similar to that of EGFR.  ErbB4 is 

thought to form homodimers (as in A), while ErbB3 does not.  Both ErbB3 and ErbB4 

form heterodimers with other ErbB receptors.  (C)  ErbB2, for which no ligand is known, 

adopts an extended conformation [24] and forms heterodimers with ligand-activated 

ErbB receptors. 
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It has been known since the 1980s that ligand binding to cell surface EGFR expressed at 

the cell surface results in Scatchard plots that are curved and concave-up [102] (Fig. 35A).  This 

phenomenon has been interpreted as representing two receptor populations (although other 

interpretations are possible):  a small population of “high affinity” sites for ligand (≈ 5%, 10-100 

pM KD [25, 122]) and a larger population of “low affinity” sites (≈ 95%, 1-10 nM KD [25, 122]).  

This behavior at the cell surface requires the presence of the intracellular region [122, 123], and 

does not occur in purified preparations of the receptor extracellular region [124]. Multiple 

hypotheses have been proposed to explain these observations, including differential binding to 

extended and inactivated receptor populations, heterogeneous receptor density at the cell 

surface [125], the involvement of an unknown interaction partner [126], and negative 

cooperativity [127].  No definitive molecular evidence has been reported to explain the 

phenomenon, but recent modeling and ligand competition studies support negative 

cooperativity (Fig. 35) [18, 123].  Whatever the mechanism underlying this feature of ligand 

binding, it may have implications on receptor activation, signaling, and inhibition. 

3.1.4 Inhibition of ErbB receptor activation 

Given the correlation between aberrant activation of ErbB receptors and the progression 

of human cancers, ErbB receptors are an obvious target for anti-cancer therapeutics [115].  

Inhibitors interfere with receptor activation by two distinct approaches.  One group, the ErbB 

tyrosine kinase inhibitors (TKIs), targets the enzymatic activity of the intracellular kinase domain.  

These TKIs typically are ATP-mimetic small molecules that diffuse across the plasma membrane 

and compete for (or covalently block) ATP binding to the ErbB TK.  FDA approved ErbB TKIs 

include Gefitinib (AstraZeneca), Erlotinib (Genentech), and Lapatinib (GlaxoSmithKline) [103, 

110]. 

The second group of ErbB inhibitors abrogates receptor activation via the extracellular 

region.  These function by blocking ligand binding, sterically preventing conformational changes 

associated with receptor activation, preventing receptor dimerization, or a combination of these
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Figure 35.  Receptor species predicted by negative cooperativity. 

(A)  Ligand binding to a single class of receptor binding sites results in a linear 

Scatchard plot (dashed gray line).  However, EGF binding to EGFR at the cell surface 

produces a curved, concave-up Scatchard plot.  (B) Receptor states in a system that 

exhibits cooperativity (adapted from [18]; compare to Fig. 34A).  Receptor extracellular 

regions are shown in gray; ligand in red.  Cooperativity influences ligand binding in the 

boxed region.  Negative cooperativity occurs when binding of a first ligand to an 

unliganded dimer (K21) occurs with higher affinity than binding of a second ligand (K22). 

[25]. 
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mechanisms [128] (Fig. 36).  Small molecules that disrupt the interactions involved in ligand 

binding and dimerization have not been identified, possibly due to the large surface areas 

involved.  Monoclonal antibodies have been isolated that inhibit activation by binding to the 

extracellular region of the receptors.  Antibodies recognizing EGFR and ErbB2 have been 

studied since the 1980s.  A number of anti-ErbB antibodies are now known, which exhibit 

distinct modes of binding and inhibition (Table 6).  These antibodies have proven useful as 

biochemical tools in the study of receptor function [129, 130], as histological agents, and as 

cancer therapeutics (Table 6)  

At the molecular level, both mAbs and Fab fragments are typically capable of inhibiting 

receptor activation.  However, intact antibodies may additionally elicit a variety of immune 

responses are mediated by the Fc constant region.  Fc receptors (FcRs) occur on the surface of 

natural killer cells, phagocytes, and other immune cells that may destroy antibody targeted 

tumor cells by phagocytosis or antibody-dependent cellular cytotoxicity (ADCC) [131].  Fc 

regions are also recognized by subunits of the complement system, which lyses antibody bound 

cells by complement dependent cytotoxicity (CDC) [132].  These immune responses are an 

important component of the overall anti-tumor activity of antibody therapeutics, although both 

types of response are recruited more robustly by antibodies of subtype IgG1 than IgG2 (Table 6) 

[131, 132].  The relative importance of ErbB receptor inhibition and of immune response 

recruitment, with respect to anti-tumor efficacy, has not been clearly evaluated. 

The following sections briefly describe notable and clinically relevant antibodies directed 

against EGFR and ErbB2, beginning with those for which the interaction with antigen has been 

structurally characterized.  
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Figure 36.  Inhibition of ErbB activation by antibody binding.

Characterization of inhibitory ErbB antibodies has revealed several distinct inhibitory 

routes.  (A) Cetuximab, IMC-11F8, panitumumab, and zalutumumab directly occlude 

the ligand binding site on EGFR domain III.  (B) Matuzumab sterically obstructs 

adoption of the extended conformation of EGFR (and thus high affinity ligand binding, 

as well as dimerization) without directly competing with ligand binding. (C) 

Pertuzumab disrupts receptor dimerization of ErbB2.  (D) Trastuzumab recognizes an 

extracellular juxtamembrane epitope on ErbB2 and may inhibit activation by 

preventing association of ErbB2 TK domains.  Additional mechanisms have also been 

proposed for the antiproliferative effects of this antibody. 
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3.1.5 Inhibitory EGFR antibodies C225 and IMC-11F8 

Of the antibody inhibitors to EGFR, the most extensively studied is the murine antibody 

225 and its derivatives.  mAb 225 was generated by immunizing mice with A431 cells (an 

epidermoid carcinoma cell line expressing high levels of EGFR [153]) and screening the resulting 

antibodies for inhibition of both EGF binding and receptor phosphorylation [133, 154].  A 

human/murine chimera of 225, IMC-C225 (Cetuximab/Erbitux), was developed as a therapeutic 

by Imclone, Inc. and has FDA approval for the treatment of colorectal cancer and cancers of the 

head and neck [134, 135]. 

mAb 225 competes with ligand for binding to EGFR at the cell surface [133] and in 

solution [5].  We have structurally characterized the interaction between FabC225 and the 

extracellular region of EGFR, revealing the basis of this competition [5].  FabC225 binds to an 

epitope on domain III that substantially overlaps with the ligand binding surface (Figs. 37A & 

38C).  Mutations to key residues on the surface of domain III affect binding of FabC225, binding 

of ligand, or both, confirming the existence of overlapping binding sites.  Additionally, bound 

FabC225 sterically prevents adoption of the extended conformation, precluding the possibility of 

ligand independent dimerization and activation. 

The fully human monoclonal antibody, IMC-11F8, inhibits similarly to mAb C225.  IMC-

11F8 was identified from a phage display library, based on its ability to bind A431 cells and to 

compete with mAb C225 for binding to EGFR [150, 155].  Not surprisingly, the mAb C225 and 

IMC-11F8 epitopes are nearly identical, and IMC-11F8 shows similar inhibitory characteristics 

[147].  This antibody is in Phase II trials for the treatment of colorectal cancer. 

Together mAb C225 and IMC-11F8 represent a single mode of EGFR inhibition, 

involving direct competition of ligand binding along with steric blockade of the extended 

receptor conformation (Fig. 36A). 
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Figure 37.  Crystals structures of Fab inhibitors in complex with EGFR and ErbB2.

Molecular surface representations of (A) FabC225/cetuximab (light orange) bound to the 

EGFR extracellular region (sEGFR, blue), (B) FabEMD72000/matuzumab (orange) bound 

to a model of sEGFR (blue), (C) Fab4D5/trastuzumab (dark red) bound to ErbB2 (teal), 

and (D) Fab2C4/pertuzumab (red) bound to ErbB2 extracellular region (teal).  The 

structurally characterized inhibitors of EGFR recognize domain III, while ErbB2 inhibitors 

bind domains II and IV.  Figures were generated from PDB coordinates 1YY9 [1, 5] (A), 

3C09 [6] (B), 1N8Z [24] (C), and 1S78 [31] (D).  Domains I, II, and IV in (B) are modeled on 

1YY9. 
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Figure 38.  Comparison of epitopes and ligand binding sites on EGFR domain III.

Molecular surface representations of EGFR domain III.  (A) EGF and (B) TGFα binding 

footprints are highlighted [1, 2].  (C)  The FabC225 epitope (gold) significantly overlaps 

with the ligand binding sites, while the Fab72000 epitope (red) does not.  (D) Mutation 

of the indicated amino acids affects binding of inhibitory antibodies panitumumab 

(green) [9], zalutumumab (magenta) [10, 14], and mAb 13A9 (blue) [29].  The domain III 

representation was generated from structure 1YY9 [5].  (A-C) Relevant complex 

structures (EGF:1IVO, TGFα:1MOX, FabC225:1YY9, Fab72000:3C09) were aligned to 

domain III.  Atoms on domain III within 4 Å of bound ligand or Fab are highlighted. 
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3.1.6 Inhibitory EGFR antibody mAb 425/EMD72000 

A separate mechanism of inhibition is achieved by the inhibitory murine antibody 425, 

which has been humanized for potential therapeutic applications as EMD72000/matuzumab 

(Merck KGaA).  mAb 425 was generated in mice immunized with A431 cells, and was identified 

by screening the resulting antibodies for inhibition of EGF binding [136].  It inhibits receptor 

activation and tumor growth, although EMD72000 exhibited poor performance in Phase II clinical 

trials [137]. 

The structure of the Fab fragment of EMD72000 (Fab72000) has been determined in 

complex with the EGFR extracellular region (Fig. 37B) [6].  Fab72000, like FabC225, binds to 

domain III, but recognizes an epitope distinct from the ligand binding surface (Fig. 38C) [6].  

Mutations to residues in domain III that disrupt EMD72000 binding to EGFR do not alter ligand 

binding.  However, bound EMD72000 sterically blocks adoption of the active receptor 

conformation, by preventing domain I from adopting its extended position.  Thus, EMD72000 

prevents bivalent binding to ligand and dimerization induced receptor activation (Fig. 36B).  The 

distinction between this mechanism and the competitive inhibition of mAb C225 may be 

therapeutically relevant.  While the binding and inhibitory activity of mAb C225 (and similar 

antibodies) may be out-competed by high concentrations of ligand, EMD72000 inhibition is 

immune to such competition.  This grants EMD72000, and similarly binding inhibitors, particular 

therapeutic utility for the treatment of tumors that involve overexpression of EGFR ligand [6]. 

3.1.7 Inhibitory antibodies of ErbB2 

Antibodies that recognize and inhibit ErbB2 activation have been characterized, as well.  

As ErbB2 has no known soluble ligand (thus far) and adopts only an extended conformation [24, 

31, 156], these inhibitors utilize mechanisms distinct from inhibitory EGFR antibodies. 

Murine monoclonal antibody 2C4 was generated by immunizing mice with NIH 3T3 cells 

transfected with human ErbB2 [157].  mAb 2C4 blocks ligand dependent ErbB2/ErB3 

heterodimer activation and cell growth in ErbB2 expressing tumor cell lines and xenograft 
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studies [158, 159].  mAb 2C4 has been humanized as a therapeutic (pertuzumab/Omnitarg) 

[160], and is in Phase II trials for treatment of breast, ovarian, prostate, and other cancers [152]. 

Structural characterization of the pertuzumab Fab/ErbB2 complex shows pertuzumab to 

bind domain II of ErbB2 (Figs. 37D, 39) [31].  ErbB2 heterodimerizes with other ErbB receptors 

[105, 115] and this interaction is thought to involve the arm region of domain II, as in ligand 

stabilized homodimerization of EGFR [1, 2].  The pertuzumab epitope lies largely on the 

dimerization arm (Fig. 39), which sterically prevents ErbB2 from engaging in a heterodimerization 

interaction (Fig. 36C) [31].  This structural observation explains the ability of pertuzumab to block 

heterodimer formation on the cell surface [159]. 

A second murine monoclonal antibody, 4D5, was generated by the same method as 

mAb 2C4 [157].  mAb 4D5 specifically recognizes ErbB2 [157, 161], decreases ErbB2 

phosphorylation in breast cancer cell lines [162, 163], and decreases tumor growth of ErbB2 

expressing tumors in xenograft mice [164].  mAb 4D5 was subsequently humanized 

(trastuzumab/Herceptin) for therapeutic applications [165].  Trastuzumab has FDA approval for 

the treatment of breast cancers [151]. 

The structure of the trastuzumab Fab bound to the ErbB2 extracellular domain has been 

determined [24]. Trastuzumab recognizes an epitope on the extracellular juxtamembrane region 

of the receptor, domain IV (Figs. 37C & 39).  This epitope does not include regions thought to 

significantly stabilize receptor dimerization, and trastuzumab binding inhibits only some forms of 

ErbB2 heterodimerization (blocking ErbB2/EGFR, but not ErbB2/ErbB3 heterodimer formation) 

[166].  Since trastuzumab inhibits proliferation in cells in which ErbB2 is overexpressed and 

constitutively active, it may be that this antibody generally (independent of dimerization) inhibits 

close association and trans-activation of the TK domain (Fig. 36D).  Additionally, it has been 

suggested that the antiproliferative effects of trastuzumab arise largely from antibody 

cytotoxicity, promotion of receptor internalization, and inhibition of ectodomain shedding [24, 

167], rather than inhibition of dimerization.   
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Figure 39.  Epitopes of ErbB2 antibodies.

The epitopes of anti-ErbB2 antibodies pertuzumab (red) and trastuzumab (dark red) are 

shown on a molecular surface representation of the ErbB2 extracellular region.  The 

pertuzumab epitope on domain II includes the dimerization arm and other amino acids 

that, in EGFR, mediate dimerization.  The domain IV surface recognized by 

trastuzumab does not contribute strongly to dimer stabilization, by analogy with EGFR 

[21].  However, it is thought trastuzumab binding sterically affects intracellular self- or 

hetero-association [18, 24].  Atoms in ErbB2 within 4 Å of bound antibody are 

highlighted, based on PDB structures 1S78 (pertuzumab) and 1N8Z (trastuzumab). 

  



 82   

3.1.8 Inhibitory EGFR antibody 806 

Murine EGFR antibody 806 was derived from mice immunized with mouse fibroblast 

cells expressing EGFR variant III (also called de2-7, abbreviated here as EGFRvIII).  EGFRvIII 

arises from an in frame deletion of exons 2-7 of the EGFR gene.  In the resulting variant, amino 

acids 6 – 273 of wild type EGFR are replaced by a single glycine; domain I and much of domain 

II are absent [168].  This aberrant form of EGFR is constitutively active [169], although it is not 

known if this is caused by ligand independent activation of properly folded EGFRvIII, or by 

mislocalization and aggregation.  EGFRvIII arises spontaneously in a portion of human tumors (≈ 

24 - 76% of glioblastomas [170, 171]; ≈ 42% of head and neck tumors [172]), and tumor 

therapies targeting EGFRvIII may benefit from high selectivity for tumor cells.   

Antibody 806 was selected for its ability to specifically recognize EGFRvIII over wild type 

EGFR, though it also binds to cells overexpressing wild type EGFR [173].  Epitope mapping [29, 

174] and structural studies [3] have determined the epitope of mAb 806 (and the related 

antibody mAb 175 [3]) to be a disulfide bonded loop composed of residues 287 – 302 of the 

mature receptor.  This region of domain II is mostly buried in both the extended and tethered 

conformations of wild-type receptor (Fig. 40).  It is plausible that the mAb epitope is disordered 

in EGFRvIII as well as in some population of over-expressed wild-type receptor. 

If mAb 806 proves to be an effective therapeutic, it may have advantages over other 

antibody EGFR inhibitors.  Antibodies that recognize full length, folded EGFR bind to epithelial 

tissues [175, 176].  This increases the dosage required to adequately target EGFR expressing 

tumors, and may contribute to therapeutic side effects.  By contrast, the specificity of mAb 108 

for EGFRvIII may result in greater selectivity for tumor cells and decreased immunological side 

effects [3, 128].   mAb 806 (chimerized to ch806, now termed Necitumumab) has completed 

Phase I trials [149] and has been licensed to Abbott Laboratories for further development. 
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Figure 40.  The epitope of mAb 806 on the EGFR extracellular region. 

The epitope of antibody 806, amino acids 287 – 306 of EGFR, is highlighted (blue) in a 

molecular surface representation of EGFR extracellular region in (A) extended and (B) 

tethered conformations.  In both conformations, the epitope is well packed within 

domain II and is inaccessible to mAb 806 [3].  mAb 806 is thought to recognize partially 

unfolded EGFR, as well as EGFR variant III, which lacks domain I and most of domain II 

[3].  The model of the extended conformation was generated from PDB ID 1IVO [2], and 

domain IV of this conformation was modeled from 1YY9 [5] by alignment with domain 

III.  The tethered conformation was generated from chain A of 1YY9. 
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3.1.9 Other clinically important EGFR antibodies 

Several other clinically important inhibitory EGFR antibodies have been described, but 

have not been as fully structurally characterized. 

Inhibitory antibody E7.6.3 (panitumumab/Vectibix) was generated by immunizing 

transgenic XenoGraft mice, which produce fully human antibodies, with A431 cells [177, 178].  

Panitumumab inhibits ligand binding and receptor phosphorylation, and epitope mapping 

indicates that its epitope overlaps with that of mAb C225 [9].  Panitumumab has been approved 

by the FDA for the treatment of colorectal cancer [145, 179], and is in trials for use against other 

cancers and in combination therapies. 

Antibody 2F8 (HuMax-EGFr, zalutumumab) was created by immunizing HuMax 

transgenic mice, expressing fully human antibodies, with both A431 cells and purified EGFR 

[180].  Zalutumumab blocks ligand binding, receptor phosphorylation, and growth of EGFR 

expressing tumor cells [180].  Epitope mapping and electron microscopy protein tomography 

data are consistent with an epitope on domain III [10].  Zalutumumab is in Phase III trials for the 

treatment of head and neck cancer [146]. 

Murine antibody R3 was generated by immunizing mice with purified human EGFR, and 

has been humanized (h-R3/nimotuzumab/TheraCIM/Theraloc) for clinical investigation [144, 

181].  Nimotuzumab bocks ligand binding and receptor phosphorylation in cells [144], and 

restricts tumor growth in xenograft mice [182].  The structure of the nimotuzumab Fab alone has 

been determined [143].  Modeling and mutational analysis suggest an epitope on domain III, 

partially overlapping that of cetuximab [143].  This antibody has been reported to produce few 

toxic side effects as a therapeutic [183], and has regulatory approval in a number of countries 

(including Brazil, India, and China [184]), though not yet in the US.  Nimotuzumab is in Phase III 

trials for the treatment of glioma. 

3.1.10 Non-clinical EGFR antibodies with unique properties 

Several non-therapeutic antibodies directed against EGFR are notable for having unique 

binding or inhibitory characteristics.  These antibodies have been characterized to some extent, 
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but they have not been the subject of structural study, and their epitopes have not been 

determined in detail.   

Murine antibody 108 was generated by immunizing mice with EGFR expressing CHO 

cells, and was identified by its ability to bind A431 and HER14 cells (NIH-3T3 fibroblast cells 

stably expressing human EGFR) [25].  mAb 108 decreases ligand induced receptor 

phosphorylation [25] and inhibits tumor growth in mouse xenografts [185].  Though this antibody 

binds to domain III of the receptor [129], it does not robustly inhibit ligand binding [25].  

Interestingly, mAb 108 specifically inhibits high affinity ligand binding, but not low affinity 

binding, at the cell surface. 

Murine antibody 2E9 was generated by immunizing mice with membrane preparations 

from A431 cells, and was screened for the ability to pull down kinase functional EGFR [139].  

mAb 2E9 binds to domain I of the receptor [129] and, in contrast to mAb 108, blocks only low 

affinity ligand binding at the cell surface [139]. 

Finally, murine antibody 13A9 was generated by immunizing mice with A431 cells 

followed by purified EGFR [140].  mAb 13A9 binds to domain III of the receptor [29] and inhibits 

the growth of A431 cells [157].  Curiously, this antibody competes with TGFα binding but not 

with EGF binding to EGFR [130, 140], even though the epitopes of these two ligands 

substantially overlap [1, 2] (Figs. 38A & B). 

3.1.11 VHH inhibitors of EGFR 

Conventional IgG antibodies, including the monoclonal antibodies detailed above, are 

composed of two heavy and two light chains (Fig. 41).  The interaction with antigen is mediated 

by six complementarity determining regions (CDRs), three each on the heavy chain variable Ig 

domain (VH) and the light chain variable Ig domain (VL).  The minimum antigen binding unit of 

these antibodies is a single Fab fragment (four Ig domains) or an Fv fragment (two variable Ig 

domains only).  An unconventional class of IgG antibodies occurs naturally in camelids alongside 

conventional antibodies.  Termed heavy chain antibodies (HCAb), these antibodies lack light
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Figure 41.  Conventional and heavy chain only antibody structure. 

(A) A conventional IgG antibody is composed of two heavy and two light chains, with a 

total of twelve Ig domains.  The antibody can be divided into three stably folded units: 

two Fab modules and one Fc module.  Antigen binding is mediated by the heavy (VH) 

and light chain (VL) variable domains.  An Fv fragment (one VH and one VL domain) is 

the smallest unit that contains an intact antigen binding surface.  (B) Camelid HCAbs 

lack light chains as well as the heavy chain CH1 domain.  The minimum antigen binding 

unit of a camelid HCAb is a single VHH domain. 
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chains and exist as homodimers of heavy chains only [186] (Fig. 41).  Thus, the antigen binding 

surface of HCAbs is composed of only three CDRs on a modified heavy chain variable domain 

(VHH, also termed Nanobody [187]), and the minimum antigen binging unit is a single VHH (Fig. 

41).  (Single chain antibodies also occur in cartilaginous fish [termed IgNARs; immunoglobulin 

new antigen receptors], but arose independently and are only distantly homologous to HCAbs 

[188].)  HCAbs lack the heavy chain constant domain (CH1) and often incorporate a relatively 

elongated hinge region (in IgG2a and IgG2b subtypes) [189].  The lengthened hinge increases 

the potential separation between antigen binding sites, partially compensating for the absence 

of CH1.  Additionally, residues of the former VH/VL interface are altered in VHHs to compensate 

for the absence of the VL domain.  By contrast, the HCAb Fc region is conventional and is a 

competent immune effector [190]. 

VHHs have received attention as an alternative to conventional mAbs as diagnostic and 

therapeutic agents, offering similar advantages to other truncated antibody constructs 

(diabodies [191], unibodies [192], single chain antibodies [193], etc.).  As small single domain 

proteins, VHHs are well folded and are well produced in exogenous expression systems, 

including E. coli.  Their small size may confer improved tissue penetration.  Like conventional 

antibodies, VHHs are stable and resistant to thermal denaturation [194]; unlike conventional VH 

domains, VHH folding is reversible [194].  Also, notwithstanding the adaptations that have 

occurred to accommodate the absence of a VL, VHHs exhibit close homology to human VH 

domains.  This may permit VHHs to be humanized for therapeutic use [195], although the 

antigenic properties of humanized VHHs are not well characterized. 

Several reports describe anti-EGFR VHH fragments.  VHH ORB1-83 was isolated from a 

phage display library of Camelus bactrianus VHH constructs on the basis of its ability to 

specifically recognize an N-terminal peptide from EGFRvIII [196, 197].  This VHH has been used 

as an immunohistochemical agent to study EGFRvIII expression in thyroid carcinoma [198].   

VHHs have also been generated that recognize folded epitopes on the EGFR extracellular region 

[199, 200].  In one of these studies, Llama glama were immunized with intact A431 cells or A431 
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membrane preparations.  Lymphocytes were isolated from immunized animals, and HCAb cDNA 

was used to construct a phage display library.  Anti-EGFR VHHs from this library have been 

isolated, and have been found to block ligand binding, inhibit ligand dependent EGFR signaling, 

and restrict tumor growth [199].  These VHHs have also been used as delivery vehicles for 

radionuclides [201].  We have structurally characterized a subset of these VHH fragments bound 

to the EGFR extracellular region (see Section 3.3). 

 

3.2 The application of structural knowledge to mAb inhibitors of EGFR 

3.2.1 Domain level epitope mapping of antibody binding to sEGFR 

To assess the domain specificity with which the antibodies in our panel (shown in bold 

and underlined in Table 6) interact with sEGFR, binding  was measured between antibodies and 

wild type sEGFR, as well as three sEGFR truncation variants:  (i) sEGFR501, which terminates 

after amino acid 501 and includes only the first disulfide bonded module of domain IV, (ii) 

sEGFRd3, which comprises the first four amino acids of mature EGFR followed by amino acids 

311 to 514 of sEGFR, (iii) sEGFRd1, which terminates after amino acid 183, (iv) and sEGFR239, 

which terminates after amino acid 239, immediately preceding the dimerization arm.  The mAb 

or corresponding Fab fragment was amine coupled to a Biacore surface, and samples of 

increasing concentration of sEGFR or the relevant altered form of sEGFR were passed over 

these surfaces.  The equilibrium SPR response for each sample was plotted as a function of 

concentration and fit to a single site binding equation.  Representative binding curves for each 

Fab surface are shown in Figure 42, and the mean equilibrium binding constants are listed in 

Table 7. 

The binding of wild type sEGFR to Fab13A9 is the highest affinity for this group of 

antibodies (KD = 1.1 ± 0.1 nM), similar to the affinity previously reported for binding to FabC225 

(KD = 2.3 ± 0.5 nM) [5].  Binding to Fab108 and Fab425 is somewhat weaker (KD = 19.8 ± 2.2 nM
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Figure 42.  Equilibrium binding analysis for the interaction between sEGFR 

constructs and inhibitory Fab or EGF surfaces. 

Increasing concentrations of the indicated sEGFR constructs were applied to Biacore 

surfaces of amine-coupled Fab or EGF ligand.  The normalized equilibrium SPR 

response signal is plotted against analyte concentration.  Representative binding curves 

are shown for each analyte/surface combination.  Data were fit to a single site binding 

isotherm, and the resulting line of best fit is shown.  KD values are reported in Table 7. 
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and 46.4 ± 8.7 nM, respectively), and that to Fab2E9 is significantly less (KD = 130 ± 18 nM).  In 

each case, the equilibrium binding constants to immobilized mAb and Fab are similar, as is 

expected in this assay format since there is no avidity effect due to the bivalence of the antibody 

when it is immobilized on the surface.  We were unable to obtain surface immobilization for mAb 

2E9, thus no KD is reported. 

The longest of the sEGFR variants, sEGFR501, bound to all Fab surfaces.  For Fabs 

C225, 108 and 13A9 the KD values for the binding of sEGFR501 were the same or slightly higher 

affinity than for full-length sEGFR (Fig. 42 & Table 7), while against the Fab425 surface the 

affinity was reduced by approximately 2 fold.  This trend is in stark contrast to the binding of 

sEGFR501 to immobilized EGF.  As has previously been reported [21, 202], sEGFR501 binds to 

EGF with approximately 25 fold stronger affinity. 

All of the antibodies, with the exception of mAb 2E9, bind to domain III of sEGFR.  

Indeed, sEGFRd3 binds with higher affinity to each immobilized mAb or Fab than is observed for 

full-length sEGFR, possibly due to the absence of steric effects imposed by the other domains 

of the receptor.  Both sEGFRd1 and sEGFR239 bind to immobilized Fab2E9, with respective KD 

values of 59.2 ± 14 nM and 65.7 ± 17 nM, confirming that the epitope for this antibody lies in 

domain I of EGFR, as was predicted on the basis of experiments using chimeric chicken/human 

EGFR molecules [129]. 

3.2.2 Domain III binding antibodies have distinct but overlapping epitopes. 

To more precisely map the epitopes of those antibodies that interact with sEGFRd3, a 

panel of site specifically altered sEGFR variants was utilized.  These altered sEGFR proteins 

were designed based on the X-ray crystal structures of sEGFR in complex with EGF/TGFα [2, 

156] with FabC225 [5] and with the Fab fragment from matuzumab (FabEMD72000) [6].  For 

each sEGFR variant we determined the equilibrium binding constant for its interaction with each 

immobilized Fab.  Data are summarized in Figs. 43 and 44, and KD values are listed in Table 7. 
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Table 7. Equilibrium binding constants of sEGFR and sub-domain fragments to 

immobilized Fabs, mAbs and ligands. 

KD values are nM, unless specified otherwise. 

 
 sEGFR sEGFR501 sEGFRd3 sEGFRd1  sEGFR sEGFRd3 

FabC225 2.3 ± 0.3 nM 1.6 ± 0.2 nM 1.2 ± 0.3 nM > 50 μM mAb C255 2.37 ± 0.2 nM 0.26 ± 0.06 nM

Fab425 46.4 ± 8.7 nM 100.5 ± 0.6 nM 20.6 ± 1.4 nM > 50 μM mAb 425 53.9 ± 15 nM 10.6 ± 0.4 nM 

Fab108 19.8 ± 2.2 nM 12.1 ± 1.0 nM 4.7 ± 0.5 nM > 50 μM mAb 108 22.4 ± 3.8 nM 2.35 ± 0.2 nM 

Fab13A9 1.1 ± 0.1 nM 0.83 ± 0.02 nM 0.4 ± 0.02 nM > 50 μM mAb 13A9 1.47 ± 0.17 nM 0.24 ± 0.04 nM

Fab2e9 130 ± 18 nM 140.8 ± 1.2 nM > 50 μM 59.2 ± 14 nM    

EGF 130 ± 4 nM 7.8 ± 3.5 nM 2.4 ± 0.4 μM > 50 μM TGFα 335 ± 31 nM 11.2 ± 1.2 μM 
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Figure 43.  Amino acid substitutions on the surface of EGFR domain III 

specifically affect binding of ligand and inhibitory antibodies. 

Binding of the indicated sEGFR variants to the indicated interaction partner was 

determined by Biacore (Table 7).  Data are represented as fold change in KD, versus 

biding to wild type sEGFR, on a logarithmic scale. (See Fig. 44) 
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Figure 44.  Epitope mapping on the surface of EGFR domain III.

(A) A cartoon of the secondary structure of EGFR domain III (a.a. 310 – 480) is shown 

with a transparent molecular surface (upper panel).  Point mutations (gray) that disrupt 

binding of EGF, Fab425, Fab225, or both EGF and Fab225 are shown on the surface of 

domain III (lower panel).  (B) The footprints of EGF, Fab225, and Fab72000 are shown on 

domain III.  Blue surface indicates atoms on domain III within 4 Å of the respective 

binding partner.  (C) Binding affinities of each indicated binding partner for each sEGFR 

variant indicated in (A) was determined by Biacore.  The fold decreases in KD was sorted 

on a logarithmic scale into four bins, and represented on the surface of domain III by 

color (white represents least change; dark red represents greatest decrease in binding).   

(See Fig. 43) 



 95   

As we have previously reported, there is a “hot spot” for FabC225 binding at the center 

of the FabC225 epitope on domain III, close to a hydrophobic pocket that accommodates Y98 

(Kabat numbering scheme) of FabC225 (Q408A/H409A) [5].  This same hydrophobic pocket 

accommodates the critical L47 of EGF, and substitutions in this region also affect EGF binding.  

By contrast, alterations in this region have no effect on the binding of Fab425.  Fab425 binding 

is all but abolished against sEGFR variants with substitutions in the crystallographically defined 

epitope of FabEMD72000, as expected.  Interestingly, these same alterations in domain III 

(K463A, K454A and T469A/S460A) have a similar dramatic effect on binding of sEGFR to 

immobilized Fab108, suggesting that the epitope of mAb 108 overlaps significantly with that of 

mAb 425. 

There is a modest effect of the K463A variant upon the binding to Fab13A9.  By 

contrast, three substitutions clustered near the C-terminal α-helix of domain III (K443A, S468I 

and N473A) result in a substantial decrease in sEGFR binding to Fab13A9, suggesting that the 

epitope for mAb 13A9 lies in this region of domain III.  S468, as well as nearby residue E472, 

were previously identified as important for mAb 13A9 binding by yeast surface display [29]. This 

region of domain III lies within the C225 epitope but outside of the ligand binding surface.  

Individually, these single amino acids substitutions have minimal effect on the binding of sEGFR 

to immobilized FabC225, but a variant in which both K443 and N473 are substituted with alanine 

(K443A/N473A) does show significant reduced binding to FabC225, and binding to Fab13A9 is 

almost abolished (Fig. 43 & Table 7). 

This limited fine epitope mapping of domain III suggests that some antibodies directly 

compete for binding to domain III, while others may bind simultaneously.  To test this hypothesis 

and compliment the epitopes identified through amino acids alterations, we next investigated 

the effect of addition of an excess of each Fab upon the binding of sEGFR (100 nM) to each 

immobilized Fab (Fig. 45).  Addition of a 10 fold molar excess of Fab2e9 (white bars) does not 

substantially reduce the equilibrium SPR value observed for the binding of sEGFR to any of the 

immobilized Fabs tested, as would be expected since the epitope for this antibody is quite 
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Figure 45.  Binding competition of inhibitory EGFR Fabs.

The normalized SPR response is shown for equilibrium binding of 100 nM sEGFR to 

the indicated immobilized Fab in the presence of a 10 fold molar excess of the 

indicated soluble competitor Fab.  The Fab 2E9, which binds domain I, does not 

compete with the domain 3 binding Fabs.  Fab C225 competes strongly with Fabs 108 

and 13A9, but only weakly with Fab 425.  Fabs 425 and 108 compete strongly with one 

another.  Fab 13A9 competes weakly with Fabs 425 and 108. 
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distinct from the others in this group and lies on domain I.  Excess Fab225 (stippled bars) 

diminishes binding of sEGFR to all Fab surfaces, although only by about 50% to immobilized 

Fab425 (gray bars).  A similar pattern of competition is seen when FabC225 is the immobilized 

species: addition of Fab13a9 (black bars) or Fab108 (striped bars) significantly reduces binding 

of sEGFR to immobilized FabC225, while addition of Fab425 (gray bars) reduces the SPR 

response for binding to FabC225 by only about 50%. 

For both the Fab108 and Fab425 surfaces, addition of excess Fab425 or excess Fab108 

blocks all binding of sEGFR, consistent with the suggestion that these two antibodies share a 

similar epitope.  The epitopes for 425 and 108 are however not identical, as is evident in the 

ability of excess Fab13A9 to diminish the binding of sEGFR to Fab108 by about 60%, while the 

binding of sEGFR to Fab425 is not affected.  Indeed there is an increase in the SPR response for 

sEGFR binding to Fab425 in the presence of excess Fab13A9, and vice versa, implying that 

Fab13A9 and Fab425 can bind to sEGFR simultaneously, and that their epitopes do not overlap. 

3.2.3 Monoclonal antibodies 425, 108 and 13A9 do not abolish binding of sEGFR 

to EGF. 

We next asked what effects the binding of these antibodies to their respective epitopes 

on domain III has on the ability of sEGFR to bind the ligand EGF.  Samples of sEGFR at 600 nM 

containing increasing molar excesses of mAb C225, 425, 108, or 13A9 were passed over a 

Biacore surface to which EGF had been covalently coupled.  As shown in Figure 46A, the 

binding of sEGFR to the EGF is abolished by addition of 0.5 fold molar excess of mAb C225 (an 

equimolar number of antigen binding sites).  This is expected since the epitope of this mAb 

overlaps with ligand binding site on domain III of sEGFR, and we have previously reported that 

the FabC225 and FabIMC-11F8 compete efficiently for the binding of sEGFR to immobilized 

EGF [5, 147]. 

For the other antibodies, increasing molar excesses of mAb do not bring the relative 

equilibrium binding response to baseline, indicating that sEGFR is still able to interact with 
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Figure 46.  Ligand binding competition by inhibitory mAbs and Fabs. 

(A) The equilibrium SPR binding of 600 nM sEGFR to immobilized EGF is shown in the 

presence of the indicated molar excess of mAb C225 (cetuximab), 425, 108, or 13A9.  

mAb C225 exhibits essentially complete inhibition of ligand binding at 0.5 molar excess.  

(B) The fold change in equilibrium binding of 600 nM sEGFR to immobilized EGF in the 

presence of soluble competitors is shown, relative to sEGFR binding alone.  Binding 

was assayed with a 2 fold excess of mAbs C225, 425, 108, 13A9, and 2E9, a 5 fold 

excess of the respective Fabs, and a 5 fold excess of EGF.  (C) SPR sensograms 

showing association and dissociation curves of sEGFR to immobilized EGF in the 

presence of a 2 fold molar excess of mAbs C225, 425, 108, or 13A9.  Apparent 

association rates (Kobs) are shown. 
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immobilized EGF in the context of this assay.  Rather, above a 0.5 molar excess of these mAbs 

(an equimolar concentration of EGFR binding sites), SPR response remains relatively constant.  

This could be explained either if (i) sEGFR but not the mAb:sEGFR complex binds to 

immobilized EGF, (ii) the mAb:sEGFR complex binds but with a substantially lower affinity than 

sEGFR alone, or (iii) a combination of these two effects occurs.  Addition of mAb 108 to sEGFR 

in this assay leads to an initial increase in the SPR response that plateaus at a 1:1 ratio of 

sEGFR to antigen binding regions on the antibody (0.5 fold molar excess of antibody).  This 

indicates that in this case there must be some association of the mAb:sEGFR complex.  Addition 

to the sEGFR of a 2 fold molar excess of a control antibody (Ab-3, clone EGFR.1 

NeoMarkers/Lab Vision) that does not block ligand binding to EGFR [138] resulted in an 2.5 fold 

larger SPR response compared to sEGFR alone, consistent in this case with binding of a 1:1 

sEGFR:mAb complex to the immobilized EGF. 

Examination of the SPR sensograms (Fig 46C) indicates that the apparent association 

rates for the binding of a 1:2 mixture of sEGFR and mAb 108 or 13A9 are substantially slower 

than for sEGFR alone (2.7 and 6.7 fold slower respectively).  In contrast the association rate for 

the mixture with mAb 425 is not significantly altered (although in this case the equilibrium SPR 

signal is reduced by approximately 50 %).  The dissociation phase for the mixtures with mAb 

108 and 13A9 are also slower than for sEGFR alone, but the SPR response did not return to 

baseline without regeneration by low pH buffer.  We did not attempt to fit the dissociation phase 

of the sensogram.  The binding of mAb 108 and mAb 13A9 to sEGFR clearly influences the 

ability of sEGFR to bind to the immobilized EGF. 

In Fig 46B the equilibrium binding response observed at 2 fold excess of mAb or  5 fold 

excess of Fab are shown for C225, 425, 108, and 13A9, as well values for 2 fold excess mAb 

2E9 and 5 fold excess of EGF.  Antibody 2e9 reduces the SPR response to a similar extent as 

mAb 425 and also has no effect on the apparent association rate compared to sEGFR alone 

(data not shown).  In contrast to the effects observed upon addition of excess mAbs to sEGFR, 

addition of excess Fab to sEGFR reduces the SPR signaling for all Fabs tested, including 
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Fab425, 108 and 13A9 (Fig. 46B).  The trends in the effect of addition of a 5-fold molar excess of 

Fab to sEGFR are however the same as for the mAbs.  FabC225 abolishes all binding of sEGFR 

to immobilized EGF, while Fab425 and Fab2E9 reduce the binding to about 25% of that 

observed in the absence of added competitor.  The effects for Fab108 and Fab13A9 are less, 

reducing the binding value by about 50%.   

Addition of excess Fab reduces the SPR signal to a greater extent than observed for 

addition of each mAb, possibly due to the lower mass of Fab/sEGFR complexes compared to 

the mAb/sEGFR complexes that may associate with the EGF. 

3.2.4 Monoclonal antibody 13A9 competes efficiently for binding of sEGFR to 

TGFα but not to EGF 

We next tested the ability of mAb C225 and mAb 13A9 to compete with ligand binding 

to purified sEGFR.  Samples containing 600 nM sEGFR and increasing molar excesses of mAb 

C225 or 13A9 were passed over a Biacore surface of immobilized EGF or TGFα.  The equilibrium 

binding response was measured and is plotted against fold excess mAb in Figure 47A.  A 0.5-

fold molar excess of mAb C225 or mAb 13A9 (an equimolar concentration of receptor binding 

sites) completely eliminates equilibrium binding to immobilized EGF.  At the same concentration, 

mAb C225 abolishes binding to immobilized TGFα.  By contrast, and in accordance with prior 

reports [130, 140], mAb 13A9 reduces binding to immobilized TGFα by only ≈ 15%, even at a 2-

fold molar excess. 

We further compared the ability of mAb and Fab fragments of 13A9, C225, and 108 to 

inhibit binding of sEGFR to ligand.  600 nM of sEGFR combined with a 2-fold molar excess of 

mAb, a 5-fold excess of Fab, or 5-fold excess of EGF was passed over a Biacore surface of 

immobilized EGF or TGFα.  The equilibrium binding response was measured, and is shown in 

Figure 47B as fold change relative to sEGFR binding in the absence of antibody.  mAb C225 and 

its Fab fragment essentially abolish binding of sEGFR to both EGF and TGFα.  The Fab fragment 

of 13A9 behaves similarly to full antibody, competing strongly with binding to TGFα, but not 
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Figure 47.  Antibody 13A9 competes for TGFα but not EGF binding to EGFR. 

(A) The normalized SPR response is shown for equilibrium binding of 600 nM sEGFR to 

an EGF or TGFα surface in the presence of the indicated molar excess of mAb.  An 

antibody:sEGFR ratio of 0.5:1 (equivalent to a 1:1 antigen binding site:sEGFR 

stiochiometry) effectively competes for sEGFR binding to immobilized TGFα but not 

EGF.  Cetuximab competes for binding to both ligands.  (B) Normalized SPR response is 

shown of 600 nM sEGFR binding to EGF or TGFα surfaces in the presence of an excess 

of the indicated mAb, Fab, or EGF, as in 46B.  Cetuximab completely bocks binding to 

both ligands.  Antibody 108 does not robustly block binding of either ligand.  mAb and 

Fab 13A9 strongly competes for binding to TGFα, but only fractionally diminishes EGF 

binding. 
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EGF.  By contrast, the presence of excess mAb 108 results in a slight increase in equilibrium 

response units for the interaction of sEGFR with both EGF and TGFα surfaces.  The presence of 

Fab 108 diminishes equilibrium response values to approximately 40%. 

 

3.3 Inhibition of EGFR activation by VHH antibody fragments  

3.3.1 Inhibitory VHHs 7D12, IA1, and 9G8 bind to and inhibit EGFR 

VHH antibody fragments have been evaluated as alternatives to conventional antibodies 

for a variety of applications [203, 204].  The anti-EGFR VHHs 7D12, IA1, and 9G8 were 

generated by immunizing Llama glama with EGFR expressing A431 cells and A431 membrane 

preparation [199, 201].  Lymphocytes were isolated and used to create an “immune” phage 

library of VHHs.   VHH fragments were selected on the basis of their ability to specifically bind 

immobilized EGFR, and for competition with EGF.  VHH 7D12 competes with mAb 

C225/cetuximab for binding to EGFR; VHHs IA1 and 9G8 compete with mAb 425 (the murine 

predecessor to humanized matuzumab/EMD72000) [205].  All three antibodies have been shown 

to inhibit receptor activation [199, 205]. 

VHH fragments have also been the subjects of structural studies, both alone and in 

complex with antigen [34, 35, 206-209].  The absence of a VL component and the presence of a 

lengthened CDR3 give VHHs a more wedge shaped paratope than Fabs, and VHH fragments 

often recognizes clefts or concave features on their antigen [204].  We sought to determine 

whether VHHs 7D12, IA1, and 9G8 recognize epitopes similar to those of conventional inhibitory 

antibodies, and how their smaller, more convex antigen binding surfaces interact with EGFR. 

3.3.2 VHHs 7D12, IA1, and 9G8 recognize the EGFR extracellular region and bind 

with 1:1 stoichiometry 

We first determined the dissociation constant for the interaction between soluble EGFR 

extracellular region (sEGFR) and immobilized VHH 7D12, IA1, or 9G8 by surface plasmon 

resonance (SPR; Biacore) (Fig. 48).  To minimize bias due to orientation of the VHH, SPR assays 

were conducted with VHHs immobilized by two separate methods.  Purified VHHs bearing a 
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Figure 48.  Equilibrium binding of sEGFR constructs to immobilized VHH. 

Increasing concentrations of the indicated sEGFR constructs were applied to Biacore 

surfaces of amine-coupled VHH.  The normalized equilibrium SPR response signal is 

plotted against analyte concentration for three replicate curves.  Data were fit to a 

single site binding isotherm, and the resulting lines of best fit are shown.  Replicate 

binding Dissociation constants are reported in Table 7. 
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Table 8. Equilibrium binding constants of sEGFR or sEGFRd3 to immobilized VHHs.  Values 

are nM, unless otherwise specified. 

 sEGFR sEGFRd3 

VHH 7D12 219 ± 20 47 ± 3.6 

VHH 7D12 (SA)1 279 ± 19  

VHH IA1 276 ± 7.0 > 2.5 μM 

VHH IA1 (SA)1 238 ± 42  

VHH 9G8 166 ± 1.2 > 5 μM 

VHH 9G8 (SA)1 263 ± 76  

 
1.  SA surfaces were created by immobilizing exogenously biotinylated VHH-AVIs to streptavidin coated SA sensor 

chips.  All other surfaces were created by amine-coupling VHH-AVIs to CM5 sensor chips. 
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carboxy terminal birA biotinylation sequence followed by a poly-histidine tag were immobilized 

to biosensor chips by amine coupling, or were exogenously biotinylated and bound to 

streptavidin coated biosensor chips.  The equilibrium SPR response was measured for a range 

of sEGFR concentrations.  sEGFR binds to immobilized VHHs with dissociation constants (KDs) 

between 150 and 300 nM (Table 8).  These affinities are 10 – 100 fold weaker than those 

observed for inhibitory antibodies and Fab fragments but are similar to those for ligand binding 

(Table 7). 

The binding of a soluble construct comprising EGFR domain 3 (sEGFRd3) to VHHs 

7D12, IA1, and 9G8 was assayed, as well.  sEGFRd3 binds to VHH 7D12 with ≈ 4 fold tighter 

affinity than sEGFR, indicating that its epitope lies on this domain.  Tighter binding to domain III 

than to full length sEGFR has been noted for conventional inhibitory mAbs that recognize 

domain III, presumably due to reduced steric effects (see Section 3.2.1).  However, sEGFRd3 

binds with > 10 fold weaker affinity to VHHs IA1 and 9G8, compared to sEGFR binding, 

suggesting that the epitopes of these VHH fragments lie at least partially outside domain III. 

We confirmed the interactions observed in SPR experiments by examining the solution 

binding of these VHHs to sEGFR by sedimentation velocity analytical ultracentrifugation (SV 

AUC).  5 μM VHH and 5 μM sEGFR, or truncation variants, were analyzed individually or in 

combination.  This concentration is ≥ 5-fold above the measured KD for the VHH/sEGFR 

interactions, so stoichiometric mixtures of VHH and sEGFR are expected to sediment 

predominantly as a single species.  We observe that VHH 7D12 binds stoichiometrically to both 

sEGFR and sEGFRd3 (Fig. 49), whereas VHH IA1 binds sEGFR but not the sEGFRd3 construct 

(Fig. 50). 

To compare the epitope specificity of these VHH fragments we examined their ability to 

simultaneously bind sEGFR.  SV AUC analysis of 5 μM sEGFR in the presence of 5 μM each of 

VHH 7D12 and VHH IA1 reveals the formation of a ternary complex (Fig. 51), as does analysis of 

sEGFR with both VHH IA1 and Fab C225 (Fig. 52).  Thus, VHH IA1 is capable of simultaneous 

binding to sEGFR with either VHH 7D12 or Fab C225, indicating that VHH IA1 recognizes a 
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Figure 49.  VHH 7D12 binds to sEGFR, and to sEGFRd3.

Sedimentation velocity c(S) species analysis of 5 μM VHH 7D12, 5 μM sEGFRd3, 5 μM 

sEGFR, or stoichiometric mixtures of these species.  VHH 7D12 (dashed green), 

sEGFRd3 (dashed gray), and sEGFR (dashed black) sediment as discrete monodisperse 

species.  VHH 7D12 sediments as a complex with either sEGFR (black) or sEGFRd3 

(gray).  Thus, the VHH 7D12 epitope lies on domain 3 of the EGFR extracellular region. 
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Figure 50.  VHH IA1 binds to sEGFR, but not to sEGFRd3.

Sedimentation velocity c(S) species analysis of 5 μM VHH IA1, 5 μM sEGFRd3, 5 μM 

sEGFR, or stoichiometric mixtures of these species.  VHH IA1 (dashed blue), sEGFRd3 

(dashed gray), and sEGFR (dashed black) sediment as discrete monodisperse species.  

A mixture of sEGFR and VHH IA1 (black) sediments as a single complex, while a mixture 

of sEGFRd3 and VHH IA1 (gray) sediments as separate species and does not form 

complex.  This suggests that the VHH IA1 epitope lies partially or entirely outside of the 

region contained in the sEGFRd3 construct (amino acids 1-4 fused to amino acids 310-

514). 
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Figure 51.  VHHs IA1 and 7D12 do not compete for binding to sEGFR. 

Sedimentation velocity c(S) species analysis of 5 μM VHH IA1 (dashed blue), 5 μM 

sEGFR (dashed black), or stoichiometric mixtures of sEGFR and VHH IA1 (blue), or 

sEGFR, VHH IA1, and VHH 7D12 (black).  A mixture of sEGFR with VHH IA1 and VHH 

7D12 results in a single sedimenting species, corresponding to sEGFR bound to two 

VHH fragments.  Thus, VHHs IA1 and 7D12 are able to simultaneously bind to sEGFR, 

indicating that they recognize distinct epitopes. 
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Figure 52.  VHH IA1 does not compete with Fab C225 for binding to EGFR. 

Sedimentation velocity c(S) species analysis of 5 μM VHH IA1 (dashed blue), 5 μM Fab 

C225 (dashed orange), 5 μM sEGFR (dashed black), or stoichiometric mixtures of these 

proteins.  VHH IA1 and Fab C225 individually associate with sEGFR to form discrete 

sedimenting species (solid blue, solid orange, respectively).  A mixture of sEGFR, VHH 

IA1, and Fab C225 (solid black) produces a single faster sedimenting species 

consistent with a ternary complex.  VHH IA1 and Fab C225 can simultaneously bind 

sEGFR, and thus have distinct epitopes on the receptor surface. 
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Figure 53.  VHHs IA1 and 9G8 compete for binding to sEGFR.

Sedimentation velocity c(S) species analysis of 5 μM VHH IA1 (dashed blue), 5 μM 

sEGFR (dashed black), or stoichiometric mixtures of sEGFR and VHH IA1 (blue), or 

sEGFR, VHH IA1, and VHH 9G8 (black).  A mixture of sEGFR with VHH IA1 and VHH 

9G8 results in two sedimenting species; one corresponding to sEGFR bound to a 

single VHH, and one corresponding to VHH alone.  Thus, VHHs IA1 and 9G8 are not 

able to simultaneously bind sEGFR, suggesting that these antibodies have similar 

epitopes. 
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Figure 54.  Bivalent VHH 7D12-IA1 binds to sEGFR with 1:2 stoichiometry. 

Sedimentation velocity c(S) species analysis of 5 μM of the bivalent, bispecific VHH 

7D12-IA1 (dashed teal), 5 μM sEGFR (dashed black), or a stoichiometric mixture of 

sEGFR and VHH 7D12-IA1 (black).  A mixture of sEGFR and VHH 7D12-IA1 results in 

a single major sedimenting species that corresponds well with a 1:2 complex of VHH 

7D12-IAI and sEGFR.  There is no evidence of 1:1 complex.  Formation of a complex 

where a distinct receptor molecule binds to each VHH of the biparatopic 7D12-IA1 

suggests that simultaneous binding of both VHH modules to a single sEGFR is 

disfavored, at least in this assay.  
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distinct and spatially separate epitope from these antibody fragments.  By contrast, VHHs IA1 

and 9G8 both compete with mAb 425 [205], and  are therefore expected to recognize similar 

epitopes on the EGFR extracellular region.  SV AUC is consistent with these expectations, 

revealing that VHHs IA1 and 9G8 compete for binding to sEGFR (Fig. 53) and suggesting that 

overlapping epitopes or steric effects prevent simultaneous binding.   

Additionally, we have characterized by SV AUC the binding to sEGFR of a bispecific 

VHH construct comprising concatenated 7D12 and IA1 VHH domains separated by a 10 amino 

acid glycine/serine linker (VHH 7D12-IA1) [205].  We find that VHH 7D12-IA1 binds to sEGFR 

with 1:2 (VHH:EGFR) stoichiometry, and does not form a 1:1 species (Fig. 54).  If VHH 7D12-IA1 

were capable of bivalent sEGFR binding, one would expect a 1:1 species to predominate.  The 

absence of a 1:1 species in this experiment suggests that simultaneous binding of each 

paratope to sEGFR is compromised in the bispecific format, favoring formation of the 1:2 

species.  This further implies that VHH IA1 and 7D12 bind to nonadjacent epitopes. 

3.3.3 The structure of an unliganded VHH 

We have determined the X-ray crystal structure of one of the inhibitory VHHs in our 

panel, VHH IA1, in the absence of EGFR to a resolution of 1.55 Å (Figs. 55 & 56,Table 9).  The 

framework region of VHH IA1 (i.e., residues outside of the CDRs defined by Chothia [26]) adopts 

a canonical VH Ig fold (Fig. 57), which aligns to Cab-Lys3 (a well studied VHH [208]) with RMSD 

≈ 0.4 Å and to the VH domain of C225 (a conventional IgG1 antibody [133]) with RMSD ≈ 1.0 Å. 

VHH IA1 also incorporates several features typical of VHHs but uncommon for 

conventional VH domains.  The CDRs of VHHs are frequently longer than those of conventional 

VH domains; CDR3 of the VHHs in this study are 4 – 10 amino acids longer than the same region 

in cetuximab VH (Fig. 58).  In VHH IA1, part of CDR3 projects outward from the Ig domain (Fig. 

56A), which occurs in other VHH structures (Fig. 56B), but not in cetuximab VH (Fig. 56C).  VHH 

CDR3 also packs against a portion of the VH/VL interface surface (Fig. 56) [189].  These CDR 

differences increase the area and potential variation of the antigen recognition surface.   
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Figure 55.  Crystals of VHH IA1 alone.

Representative crystals of the VHH IA1 are shown.  Crystals formed with maximum 

dimensions of 100 × 100 × 2000 μm in 30% PEG8000, 0.2 M (NH4)2SO4, 0.1 M MES, pH 

6.0. 

 

500 µM
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Figure 56.  The structure of VHH IA1 alone.

Cartoons are shown of VHH IA1 in its unbound state (A), VHH Cab-Lys3 (B; from PDB: 

1JTP), and the VH domain from antibody C225 (C; from PDB: 1YY9) are shown.  Both 

VHH IA1 and Cab-Lys3 posses a relatively long CDR3 (colored), compared to the 

conventional CDR3 of VH C225.  In both (A) and (B), part of CDR3 folds back against 

the Ig domain, occluding the upper portion of the VH/VL interface region.  

Additionally, several amino acids in the interface region are typically altered in the 

HCAbs, and are shown as sticks.  The changes to positions 37 and 47 appear to 

accommodate packing of CDR3, while changes to 44 and 45 result in a more 

hydrophilic surface. 
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Figure 57.  VHH secondary structure.

A cartoon representation is shown of the VHH Ig domain secondary structure.  The Ig 

β-sandwich fold comprises two β-sheets (dark and light gray).  The foreground β-sheet 

(light gray) contains the surface that packs against the VL domain in a conventional VH 

(including strands G, F, C, C’, and C’’).  VHHs incorporate alterations to amino acids in 

C, C’, and the C/C’ loop that improve solubility and packing in the absence of a VL 

partner.  VHHs also typically possess relatively long CDR1 and CDR3 regions.  The 

elongated CDR3 often packs against part of the VH/VL interface surface. Standardized 

strand nomenclature is shown [20].  
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Figure 58.  Alignment of VHH and VH sequences.

A multiple sequence alignment of the anti-EGFR VHH constructs used in this study, 

along with the VH region of mAb C225.  Standardized Kabat numbering [7] and a 

modified Chothia numbering scheme [15] (both determined by the Abnum algorithm [6, 

15]) are shown.  CDRs defined by Kabat (dashed lines) and by Chothia (which 

correspond closely with observed loop regions; solid lines) are shown [7, 10].  Triangles 

indicate conserved amino acids in the VH/VL interface region that are substituted in 

VHHs (see Fig. 56).  Residues in CDR3 have been left-justified, rather than aligned 

according to sequence similarity, to facilitate standardized antibody numbering.  Darker 

shading indicates greater sequence similarity.  
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VHHs also contain point mutations to hydrophobic surface amino acids (typically V37F, 

G44E, L45R, and W47G/S/L/F) that form the VH/VL interface in conventional antibodies [189, 

204, 210].  These changes are thought to improve solubility (in the case of G44E and L45R) and 

to stabilize packing in the absence of a VL partner [204].  Indeed, E44 and R45 in VHH IA1 are 

clearly more polar than the homologous residues of cetixumab VH (G44 and L45), while VHH IA1 

F73 and F47 pack against CDR3 (Fig. 56A & C).  Similar point mutations occur in the other VHHs 

in this study, and are apparent in a multiple sequence alignment against cetuximab VH in Fig. 

58. 

3.3.4 The VHH 7D12 epitope on domain III 

To understand the molecular details of the interaction between VHH 7D12 and EGFR, 

we determined the crystal structure of VHH 7D12 bound to sEGFRd3.  The VHH 7D12/sEGFRd3 

complex formed crystals in two distinct crystallization conditions (Fig. 59).  Hexagonal rod 

shaped crystals (100 × 50 × 50 μm) formed at pH 6.0 and diffracted to a resolution of 2.85 Å.  

Smaller angular crystals (100 × 100 × 200 μm) formed at a nominal reservoir pH of 3.5 and 

diffracted to 2.66 Å (Table 9).  The low pH of the latter crystal form did not introduce any 

apparent disruptions in protein conformation or complex formation.  The pH 6.0 and pH 3.5 

crystal forms of the complex superimpose with RMSD < 1.0 Å, and the contacts stabilizing the 

interaction are identical in both structures. 

The framework region of VHH 7D12 reveals a typical VH Ig fold, and aligns to the 

framework region of unliganded VHH IA1 with RMSD ≈ 0.44 Å, and to the same region of Cab-

Lys3 with RMSD ≈ 0.52 Å.  EGFR domain III (amino acids 311 – 514) does not exhibit any major 

changes in main chain position compared to previous reported crystal structures of tethered 

EGFR or sEGFRd3, and aligns with an RMSD < 1.0 Å (0.4 Å against 1YY9; 0.6 Å against 1NQL; 

0.7 Å against 3B2U).  The 4 amine terminal amino acids of sEGFRd3 are identical to the first four 

residues of mature EGFR, and are included in the sEGFRd3 construct to ensure secretion and 

signal sequence cleavage.  This amine terminal region adopts an extended conformation in both 
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Figure 59.  Crystals of VHH 7D12/sEGFRd3.

Representative crystals of the (A) pH 6.0 and (B) pH 3.5 VHH 7D12/sEGFRd3 

complexes.  (A) 100 × 50 × 50 μm grew in 22.5% PEG3350, 50 mM KI, 0.1M MES, pH 

6.0.  (B)  100 × 100 × 200 μm crystals formed in 22.5% PEG3350, 0.1M sodium citrate, 

pH 3.5. 

100 µM

100 µM
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crystallization conditions and forms a strand/strand interaction with VHH 7D12 β-strand C’’ from 

a crystallographically related copy of the complex, stabilizing crystal packing. 

VHH 7D12 binds the “upper” surface of domain III, near the mAb C225 epitope and the 

ligand binding surface (Fig. 60).  This interaction involves electrostatic and hydrogen bonds, as 

well as hydrophobic contacts between antibody and antigen (Table 10).  VHH CDR1 and CDR3 

contact the first two turns of the domain III β-helix (amino acids ≈ 310 – 375); CDR2 makes no 

contacts with sEGFR.  The complex buries an average of ≈ 700 Å2 on each surface, 48% of 

which is hydrophobic surface area (Table 10).  The interface has a shape complementarity 

parameter [83] of 0.68, which is typical for antibody/antigen interactions and higher than that of 

other VHH/antigen interactions (Table 10). 

As shown in Fig. 61, a cluster of polar and electrostatic interactions occur in the center 

of the VHH 7D12 epitope.  EGFR D355 forms a salt bridge with R30 of VHH 7D12 (the only polar 

interaction to an amino acid of CDR1).  EGFR R353 makes electrostatic contacts with both 7D12 

D101 and E100f, as well as hydrogen bonds to the backbone of CDR3.  Additional hydrogen 

bonds link the CDR3 main chain carbonyls to the side chain of EGFR Q384.  These central polar 

interactions are flanked by two sets of apolar contacts.  The aliphatic portion of 7D12 R30 packs 

against EGFR F357.  Additionally, the phenol ring of 7D12 Y100e packs against the saccharide 

ring of an N-acetyl glucoseamine (NAG4201, linked to EGFR N420).  NAG4201 has rotated ≈ 90° 

with respect to its typical position in EGFR domain III [2, 5, 17] to contact Y109. 

3.3.5 Comparison of EGF, FabC225, and VHH 7D12 binding 

As VHH 7D12 binds to domain III near the binding surfaces of FabC225 and ligand, we 

have compared the molecular details of these interactions (Fig. 62).  EGF binding to domain III is 

largely stabilized by three hydrophobic interactions: L47 projects into a hydrophobic pocket on 

the surface of domain III, Y44 packs against a hydrophobic surface, and the phenol ring of Y13 

packs flat against that of F357 (Fig. 62A).  A salt bridge to EGFR D355 and polar contacts 

between the EGF main chain and Q387 further stabilize binding. 
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Figure 60.  The crystal structure of the VHH 7D12/sEGFRd3 complex. 

(A) Cartoons of VHH 7D12 (green) bound to sEGFRd3 (gray) are modeled on the 

structure of tethered sEGFR (light blue; PDB: 1NQL).  Two orientations are shown, 

related by a 180° rotation.  (B)  A closer view of the VHH 7D12/sEGFRd3 complex.  The 

VHH 7D12 epitope overlaps that of FabC225 and the ligand binding site (Fig. 64).  

Binding of VHH 7D12 is stabilized by interactions from CDR1 and 3 (Figs. 61 & 63).  The 

N-terminal LEEK sequence projects away from domain III (downward, in this orientation), 

and adopts an extended conformation. 
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Figure 61.  Detail of the interaction between VHH 7D12 and domain III of EGFR.

(A)  A cartoon of VHH 7D12 (green) bound to EGFR domain III (gray) is shown, modeled 

over the structure of tethered sEGFR (PDB: 1NQL).  The orientation is similar to that shown 

in the left side of Fig. 60A.  (B)  A detailed view of the region boxed in (A); VHH strands C’ 

and C’’ have been hidden for clarity.  VHH 7D12 binds to its epitope via CDRs 1 and 3.    A 

central network of interactions to EGFR R353 stabilizes binding, along with additional 

charged and polar interactions, and apolar contacts at the periphery of the epitope.  

Dashed lines indicate hydrogen bonds (≤ 3.5 Å) or electrostatic interactions (≤ 4.5 Å).  

Underlined VHH amino acids (Kabat numbering [7]) were altered by site directed 

mutagenesis to validate the interactions observed in the crystal structure. 
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Figure 62.  Comparison of the interactions between EGF, FabC225, and VHH 7D12 

with EGFR domain 3.  

Cartoons of EGFR domain III in complex with (A) EGF (PDB: 1IVO), (B) FabC225 (1YY9), 

and (C) VHH 7D12 are shown.  EGF binding is stabilized by apolar contacts to EGFR 

F357 and burial of EGF L47 in a hydrophobic pocket; interactions between EGFR Q387 

and K456 and the EGF main chain; and a salt bridge to EGFR D355.  FabC225 binding 

involves similar hydrophobic burial of heavy chain Y102, and polar contacts to EGFR 

Q387.  VHH 7D12 also makes polar contacts to EGFR Q387, and makes apolar contacts 

to F357.  FabC225 and VHH 7D12 interact with different EGFR motifs involved in EGF 

binding.  (The notable exception is polar interaction with Q387.)  (D) The region of EGFR 

shown in (A – C) is highlighted on tethered sEGFR (1NQL). 
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The interaction of FabC225 to its epitope utilizes some of the features on domain III as 

EGF.  Heavy chain amino acid Y102 occupies the domain III hydrophobic pocket into which EGF 

L47 projects, and makes hydrogen bonds to Q384  (Fig. 62B).  Additional electrostatic contacts 

are made by the heavy chain and extensive hydrogen bonds by the light chain also contribute to 

the interaction, but these occur mostly C-terminal to the EGF binding. 

VHH 7D12, unlike FabC225 and EGF, is not stabilized by the insertion of an apolar side 

chain into the domain III hydrophobic pocket.  Instead, the polar and charge contacts form the 

core of the epitope (Fig. 62C).  VHH 7D12 does contact residues on domain III that are critical for 

EGF binding (VHH main chain contacts to Q387; a salt bridge between VHH R30 and EGFR 

D355; van der Waals packing between VHH R30 and EGF F357; Fig. 63), but, in contrast to 

FabC225, these occur on the N-terminal side of domain III.  These differences are apparent 

when comparing the binding footprint and epitopes of EGF, FabC225, and VHH 7D12 (Fig. 64). 

Alteration of EGFR amino acids F357, D355, and Q384 has been shown to disrupt EGF 

binding (Table 7, Figs. 43 & 44), but not binding of mAb C225.  We find that an sEGFR variant 

with alterations to D355 and F357 binds immobilized VHH 7D12 with ≈ 5 fold weaker affinity 

(Table 11).  This supports the structural observation that VHH 7D12 more closely occludes this 

portion of the ligand binding surface than FabC225. 

To further validate the interactions observed in the crystal structure, two altered forms of 

VHH 7D12 were generated incorporating mutations to amino acids R30 and D101 (VHH 

7D12(R30A) and VHH 7D12(D101A)), which make stabilizing contacts in the complex structure.  

Disruption of R30 abolishes the interaction with sEGFR, while mutation of D101 weakens binding 

to receptor by three-fold (Table 11). 

3.3.6 VHH IA1 binds to a novel epitope on domain III, adjacent to domain II 

We next sought to understand the structural basis of EGFR binding and inhibition by 

VHH IA1, which competes with the inhibitory antibody matuzumab [205].  While VHH IA1 and 

sEGFR stably associate in solution (Fig. 50), this complex did not yield crystals under any of the 
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Figure 63.  Details of the interaction between VHH 7D12 and EGFR domain III.

The sequences of VHH 7D12 (Kabat numbering [7]) and domain III of EGFR are shown.  

Amino acids marked by black triangles above the sequence mediate electrostatic 

contacts in the VHH/sEGFRd3 crystal structure; gray triangles indicate hydrogen bonds; 

white triangles denote van der Waals contacts. Triangles below the sequence indicate 

these types of interactions in the EGF/EGFR crystal structure (PDB: 1IVO).  CDRs 

(Chothia definition [26]) are underlined.  VHH 7D12 makes apolar contacts with sEGFR 

L325, L348, and F357; a salt bridge with D355; and a hydrogen bond with Q384.  Several 

of these residues (notably D355 and Q384) also play a key role in stabilizing the 

interaction between sEGFR domain III and ligands EGF and TGFα [1, 2]. 
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Figure 64.  Comparison of the binding sites of EGF, FabC225, and VHH 7D12 on 

EGFR domain 3.  

The EGF binding footprint (gray, A), FabC225 epitope (orange, B), and VHH 7D12 

epitope (green, C) are shown on a surface representation of EGFR domain III, which is 

rotated 90° about a horizontal axes compared to its orientation in Figure 62D.  The 

highlighted areas indicate surface exposed atoms within 4 Å of bound ligand or 

antibody.  The VHH 7D12 epitope overlaps with both the ligand binding site and the 

C225 epitope. 
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Table 11. Equilibrium binding constants of sEGFR or variants to immobilized VHHs with 

epitope/paratope alterations. 

 

 

 

 

 

 

 

 

 

 

1.  Kabat numbering [7] is used for VHH residues. 

 

 sEGFR

VHH 7D12(R30A)1 no binding

VHH 
7D12(D101A)1 

656 ± 22 nM

VHH IA1(R27A)1 > 5.0 μM

VHH IA1(D101A)1 > 3.5 μM

 sEGFR(D355T/F357A)

VHH 7D12 928 ± 106 nM

VHH IA1 342 ± 6.5 nM

VHH 9G8 303.5 ± 12 nM
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condition screened.  We reasoned that crystallization may be hindered by a lack of surface area 

suitable for crystal packing on the extensively glycosylated sEGFR, as well as by EGFR 

conformational flexibility.  By contrast, the complex between Fab C225 and sEGFR possesses a 

larger fraction of un-glycosylated surface area, restricts the conformational freedom of the EGFR 

extracellular region, and forms well diffracting crystals [5].   Thus, we utilized the stable ternary 

complex formed by VHH IA1, Fab C225, and sEGFR (Fig. 52) as a target for crystallization.   

Crystals of the IA1/C225/sEGFR complex (75 × 75 × 1000 μm; Fig. 65) diffracted to 3.05 

Å (Table 9).  A single copy of the ternary complex occupies the asymmetric unit, and all three 

protein components are observed (Fig. 66).  EGFR adopts a tethered conformation [17], and 

FabC225 makes identical contacts with EGFR domain III as in the reported FabC225/sEGFR 

complex structure [5] (RMSD ≈ 0.5 Å).  An elbow angle [211] of 131° is observed between the 

constant and variable regions of FabC225, which is similar to the angle found in the structure of 

FabC225 alone (PDB: 1YY8; 135°) and smaller than that in the FabC225/sEGFR complex (PDB: 

1YY9; 150°) (Fig. 67).  Crystal packing is stabilized predominantly by contacts between Fab and 

domain III.  FabC225 and sEGFR domain III are well ordered, as are portions of domains II, 

domain IV, and the VHH IA1 paratope region.  However, EGFR domain I, the N-terminal portion 

of domain II, and the distal portion of VHH IA1, which makes crystal packing contacts with EGFR 

domain I, are poorly resolved and these regions are absent or present as backbone atoms only 

in the refined model (Table 9). 

VHH IA1 binds sEGFR in the cleft formed between domains II and III (Fig. 68).  However, 

ordered contacts are only observed between VHH IA1 and domain III of sEGFR, suggesting that 

VHH binding is primarily stabilized by these interactions.  An average surface area of 755 Å2 is 

buried on each partner, only 39 % of which is hydrophobic (Table 10).  VHH CDRs 1 and 3 

contact sEGFR, as do the first two amino-terminal residues of the VHH (Figs. 69 & 70).  CDR2 

does not participate in the interaction. 

As reflected by the relatively low proportion of buried apolar surface area (34% for the 

interaction with domain III; Table 10)), the interaction between VHH IA1 and EGFR domain III is 
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Figure 65.  Crystals of the VHH IA1/FabC225/sEGFR complex.

Representative crystals of the VHH IA1/FabC225/sEGFR complex.  75 × 75 × 1000 μm 

crystals formed in 17.5% P3350, 1.5M NaCl, 5% glycerol, 0.1 M MES, pH 6.5. 

500 µM
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Figure 66.  The crystal structure of the VHH IA1/FabC225/sEGFR ternary complex.

A cartoon of the VHH IA1/FabC225/sEGFR ternary complex crystal structure is shown, 

with a transparent molecular surface.  Three orientations are shown, related by 90° 

rotations.  EGFR is colored gray, VHH IA1 is blue, FabC225 light chain is yellow, and 

FabC225 heavy chain is orange.  Part of the C-terminal portion of VHH IA1 (opposite 

the CDRs) is not observed in the structure.  VHH IA1 binds on the “side” of EGFR 

domain III, adjacent to domain II (appreciated in the left- and rightmost views).  The 

VHH IA1 epitope does not overlap with that of FabC225. 
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Figure 67.  Conformational flexibility in FabC225 is apparent by comparing the 

FabC225/sEGFR and VHH IA1/FabC225/sEGFR crystal structures. 

A backbone ribbons representation of FabC225 (heavy chain: yellow; light chain: 

orange) and sEGFR domain III (teal) from the VHH IA1/FabC225/sEGFR complex 

structure is shown aligned to the same regions from the FabC225/sEGFR complex 

structure (black; PDB ID: 1YY9), with respect to sEGFR domain III.  The relative 

orientations of the constant and variable portions of FabC225 differ: an elbow angle of 

131° is observed in the VHH IA1 complex, compared to 150° in the FabC225/sEGFR 

structure.  VHH IA1 is omitted for clarity. 
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stabilized primarily by polar and electrostatic contacts.  In addition to hydrogen bonds between 

the backbone of the first two amino acids of VHH IA1 and the main chain of domain III (Figs. 69 

& 70), VHH binding is stabilized by three clusters of interactions.  The first involves an 

electrostatic contact from VHH R27 and predicted hydrogen bonds from Y102 and Y32 to EGFR 

E431.  A second cluster is formed by a salt bridge between VHH D101 to EGFR R405, likely 

polar contact between VHH T95 and EGFR R403, and hydrogen bonds from main chain atoms 

of CDR3 to both R403 and R405.  A third, and more decentralized, cluster consists of 

interactions between CDR3 and residues at the N-terminal end of domain III.  These include 

predicted hydrogen bonds from VHH Y96, S99 and the CDR3 backbone to EGFR E400; polar 

contacts between VHH S98 and E376, and between S99 and K375; as well as formation of a salt 

bridge between VHH D100 and R310.  We also note that the charged side chains in this region 

of domain III form a network of salt bridges (R403 to E376 to R301).  These contacts occur in all 

crystals structures of sEGFR in the tethered state, where they may contribute to the orientation 

of domains II and III.  VHH IA1 makes contacts to each of these domain III side chains. 

To validate the interactions observed in the VHH IA1 complex crystal structure, two 

altered forms of VHH IA1 were generated incorporating mutations to amino acids R27 and D101 

(VHH IA1(R27A) and VHH IA1(D101A)).  Purified sEGFR binds VHH IA1(R27A) with a KD of > 5 μM 

and VHH IA1(D101A) with a KD > 3.5 μM, a decrease in affinity of approximately 20- and 14-fold, 

respectively (Table 11). 

The crystal structure reveals no well ordered interactions between VHH and sEGFR 

domain II.  It is possible that discrete contacts between occur, but are not resolved due to the 

noted disorder in the distal portion of VHH IA1.  We note that the ordered side chain of VHH IA1 

Y100d is within 4.2 Å of the β-carbon of the disordered side chain of EGFR M294.  This is close 

enough for van der Waals contacts between Y100d and M249.  Even with this side chain not 

modeled, we calculate that an average surface area of ≈ 100 Å2 is excluded from solvent in the 

VHH IA1/domain II interaction (Table 10).     
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Figure 68.  VHH IA1 binds between domains II and III of sEGFR. 

Cartoons of VHH IA1 (blue) and sEGFR (gray) from the VHH IA1/FabC225/sEGFR 

complex structure are shown.  Ordered CDR regions indicated are colored darker 

blue.  VHH IA1 lies in a cleft formed by sEGFR domains II and III, though ordered 

contacts are only observed to domain III.  Compare to the position of bound VHH 

9G8, Fig. 74. 
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Figure 69.  Detail of the interaction between VHH IA1 and domain III of EGFR. 

(A) Cartoons of VHH IA1 (blue) bound to EGFR (gray) from the VHH IA1/FabC225/sEGFR 

complex are shown (FabC225 has been omitted in this view).  Domain IV projects into the 

page behind domains II and III.  (B)  A detailed view of the boxed region in (A) is shown.  

VHH framework regions are colored white.  VHH IA1 binds to domain III primarily via its 

N-terminus, and by three clusters of polar interactions made by CDRs 1 and 3.  No 

ordered contacts are observed between VHH IA1 and EGFR domain II.  Dashed lines 

indicate expected hydrogen bonds (≤ 3.5 Å) or electrostatic interactions (≤ 4.5 A).  The 

underlined VHH amino acids (Kabat numbering [7]) were altered by site directed 

mutagenesis to validate the interactions observed in the crystal structure. 
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Figure 70.  Details of the interaction between VHH IA1 and domain III of EGFR.

The sequences of VHH IA1 (Kabat numbering [7]) and domain III of EGFR are shown.  

Amino acids marked by filled triangles mediate electrostatic interactions in the 

VHH/sEGFR crystal structure; gray triangles indicate predicted hydrogen bonds; white 

triangles denote van der Waals contacts.  The interaction is stabilized by contacts to the 

amine terminus, CDR1, and CDR3 of VHH IA1. 
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3.3.7 The conformations of free and bound VHH IA1 

The availability of free and bound structures of VHH IA1 allows us to compare the 

conformational changes that occur in this VHH upon epitope binding.  The framework region of 

the Ig fold is essentially identical in bound and free forms, which superimpose with a backbone 

atom RMSD < 1.0 Å.  However, differences are apparent in the paratope.  In free IA1, the N-

terminal region lies between CDRs 1 and 3, such that the side chain of V2 projects into a 

hydrophobic crevice lined in part by Y32 (Fig. 71A).  In the bound structure, the N-terminal 

region is oriented away from the globular Ig core and makes polar contacts with domain III (Fig. 

69 & 71A).  CDR1 in the bound form adopts a slightly different conformation (backbone RMSD: 

1.98 Å), in which T28 has moved up and F29 has moved down towards the hydrophobic core, 

occupying part of the vacancy left by V2 (Fig. 71B).  M34 and Y32 side chains rotate upward.  

The rotation by Y32 brings this side chain in position to make polar contacts with EGFR E431 

(Fig. 69). 

Less extensive rearrangements occur between CDRs 2 and 3.  The C-terminal region of 

CDR3 undergoes a slight conformational change in the bound form, including a small shift by 

Y100d (Fig. 71C).  Y56 of CDR2 rotates upward ≈ 180° in the bound form, and packs against 

Y100d.  Aside from this change, CDR2 (which makes no contacts to sEGFR) and CDR3 adopt 

essentially the same orientation in both structures (RMSD < 0.6 Å). 

3.3.8 The conformation of sEGFR in the VHH IA1 complex 

EGFR domain III in the VHH IA1 complex adopts an identical conformation to domain III 

in the crystal structures of unliganded sEGFR (PDB: 1NQL; RMSD = 0.55 Å) and the 

FabC225/sEGFR complex (PDB: 1YY9; RMSD = 0.38 Å).  However, conformational differences 

are apparent in domain II that slightly alter the overall orientation of domains in the tethered 

sEGFR.  Comparison of unliganded sEGFR, the FabC225/sEGFR complex, and the VHH IA1 

ternary complex reveals two locations of flexibility, or “pivot points.”  These occur just prior to 

the C240/C267 disulfide bond (Fig. 72A) and just prior the C305/C309 disulfide bond [14] (Fig. 
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Figure 71.  Comparison of free and bound conformations of VHH IA1. 

Binding to domain III induces slight conformational changes in VHH IA1. (A) In free IA1 

(black; CDRs dark blue) the N-terminus packs against CDR1 and the hydrophobic core 

of the Ig fold.  In the bound structure (white; CDRs light blue), this segment is oriented 

away from the VHH and appears to makes polar contacts with domain III.  (B)  

Movement of the N-term removes a valine side chain from the core.  Several 

hydrophobic side chains change position.  M34 and Y32 side chains rotate, while T28 

and F29 essentially switch positions.  Rotation of Y32 brings this side chain in position 

to form a hydrogen bond with domain III.  (C)  Motions are also noted in CDR2 and 

CDR3, most notably a large rotation by Y56. 
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Figure 72.  The relative positions of domains I and III in several EGFR structures 

indicates points of flexibility in domain II. 

Ribbons representations from the structures of tethered sEGFR at low pH (violet; PDB 

ID: 1NQL), the FabC225/sEGFR complex (black; 1YY9), and VHH IA1/FabC225/sEGFR 

(teal).  (A) Portions of domains I and II are shown, aligned with respect to residues 268 – 

304 of domain II.  This reveals a site of conformational flexibility, or “pivot point,” 

immediately prior to the C240/C267 disulfide bond. (B) Portions of domains II and III are 

shown aligned with respect to domain III.  A second pivot point precedes disulfide bond 

C305/C309.  (C) A different view of sEGFR, aligned with respect to domain III, reveals 

different relative positions of domains I and III due to flexibility at the two domain II pivot 

points.  Domain I in the VHH IA1 complex adopts a position between that observed in 

1NQL and 1YY9. 
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72B), suggesting that regions 1-239 and 240-304 move as rigid bodies in unliganded sEGFR.  

Domain I in the VHH IA1 complex occupies a position, relative to domain III, between the 

positions observed in the unliganded (PDB: 1NQL) and FabC225 complex (1YY9) structures (Fig. 

72C). 

3.3.9 VHH 9G8 binds EGFR similarly to VHH IA1, in spite of differences in CDR3 

A similar crystallization strategy was employed to determine the structure of bound VHH 

9G8, which competes with VHH IA1 for binding to sEGFR (Fig. 53).  Rod-like crystals of VHH 

9G8/FabC225/sEGFR (100 × 100 × 1000 μm; Fig. 73) diffracted to 2.8 Å.  The crystal form of the 

VHH 9G8 complex is essentially identical to that of the VHH IA1 complex (overall backbone 

RMSD = 0.54 Å).  FabC225 and sEGFR adopt identical conformations, VHH 9G8 occupies a 

similar position between EGFR domains II and III, and the same regions of the complex are less 

well ordered as in the VHH IA1 complex structure (see Section 3.3.6). 

As in the VHH IA1 complex, ordered contacts are only observed between VHH 9G8 and 

EGFR domain III, although VHH 9G8 is adjacent to domain II (Fig. 74).  The interaction with 

sEGFR buries an average surface area of 638 Å2 on each partner, ≈ 100 Å2 of which is on 

domain II (Table 10).  A relatively low proportion of this area, 39%, involves apolar surface.  

Binding of VH 9G8, like VHH IA1, is stabilized largely by polar and electrostatic contacts.  N-

terminal residues, CDR1, and CDR3 contribute to the interaction; CDR2 makes no stabilizing 

contacts (Figs. 75 & 76). 

In addition to a backbone hydrogen bond between the VHH 9G8 V2 and domain III, VHH 

9G8 binding is stabilized by two of the three contact clusters observed in the VHH IA1/sEGFR 

complex (Fig. 75 & 76).  The side chains of VHH 9G8 amino acids R27, Y32, and Y102 interact 

with EGFR E431, and R27 makes additional backbone contacts to domain III.  These VHH 

residues are identical in VHHs IA1, and this first interaction cluster is essentially identical in both 

structures.  The second cluster is formed by electrostatic contacts from VHH 9G8 D101 and 

E100i to both EGFR R403 and R405, and a polar contact between the CDR3 backbone and
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Figure 73.  Crystals of the VHH 9G8/Fab C225/sEGFR complex. 

Representative crystals of the VHH 9G8/Fab C225/sEGFR complex.  100 × 100 × 1000 

μm crystals formed in 10% P3350, 0.1 M HEPES, pH 7.0. 

200 µM
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Figure 74.  VHH 9G8 binds between domains II and III of sEGFR. 

Cartoons of VHH 9G8 (purple) and sEGFR (gray) from the VHH 9G8/FabC225/sEGFR 

complex structure are shown.  VHH 9G8 lies in a cleft formed by sEGFR domains II 

and III, though ordered contacts are only observed to domain III.   
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Figure 75.  Detail of the interaction between VHH 9G8 and domain III of EGFR.

(A) Cartoons of VHH IA1 (blue) interacting with domain III (gray), reproduced from Fig. 

69, and (B) VHH 9G8 (purple) binding domain III (gray).  Interactions mediated by the 

VHH 9G8 N-term, CDR1, and the C-terminal portion of CDR3 (D101) are very similar to 

those stabilizing bound VH IA1.  The shorter CDR3 of VHH 9G8 makes fewer stabilizing 

contacts do domain III, but does make important electrostatic interactions.  Dashed 

lines indicate predicted hydrogen bonds (≤ 3.5 Å) or electrostatic interactions (≤ 4.5 Å). 
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Figure 76.  Details of the interaction between VHH 9G8 and domain III of EGFR.

The sequences of VHH 9G8, VHH IA1, and domain III of EGFR are shown.  Amino acids 

marked by triangles above the sequence denote interactions between VHH 9G8 and 

EGFR; triangles below the sequence denote interactions between VHH IA1 and EGFR. 

Filled triangles indicate electrostatic interactions; gray triangles indicate predicted 

hydrogen bonds; white triangles denote van der Waals contacts.  VHH 9G8 binding is 

stabilized by interactions with the amine terminus, CDR1, and CDR3.  Contacts made by 

the N-terminal region of VHH 9G8, CDR1, and the C-terminal region of CDR3 are similar 

to those by VHH IA1. 
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R403.  A salt bridge between D101 and EGFR is observed in the second VHH IA1 interaction 

cluster as well, but E100i is unique to VHH 9G8.  The third cluster of the VHH IA1 complex is not 

formed by VHH 9G8, as 9G8 CDR3 is shorter and of different composition.  Instead, in this N-

terminal region of domain III, VHH Y96 contacts EGFR E400 and VHH E100i forms a salt bridge 

to EGFR R310 (replacing the D100/R310 interaction observed with VHH IA1).  As with VHH IA1, 

a network of electrostatic contacts is created by VHH 9G8 binding:  VHH D101 contacts EGFR 

R403 & R405, which interact with both EGFR E376 and VHH E100i, both of which interact with 

EGFR R310. 

3.3.10 Comparison of VHH IA1, VHH 9G8, and matuzumab binding to EGFR 

The VHH IA1 epitope partially overlaps that of the inhibitory antibody matuzumab [6] 

(Figs. 77 & 78), and, like matuzumab, does not overlap the ligand binding region of domain III.  

Matuzumab binding is stabilized by extensive contacts to the domain III loop 458-462, to which 

VHH IA1 makes hydrogen bonds.  Matuzumab also forms a salt bridge with EGFR D431, which 

interacts with VHH IA1 R27.  This is consistent with binding and competition experiments, 

indicating that VHH IA1 competes for receptor binding with matuzumab, but does not directly 

compete for ligand binding to EGFR [205].  However, aide from this overlap, the matuzumab and 

VHH IA1/9G8 epitopes are quite distinct.  The VHH epitopes are located further towards the N-

terminal end of domain III (Fig. 78), and further towards the “bottom” (the opposite side of 

domain III as the ligand binding site). 

 

4.  Discussion 

4.1 Antibody inhibition of sEGFR 

4.1.1 Discussion of Antibody Epitopes 

The antibodies in this study, with the exception of 2E9, all bind to domain III of EGFR.  

The epitopes of several other inhibitory antibodies of clinical significance have been studied.  

The X-ray crystal structure of Fab11F8 has been described, in complex with domain III [147].  
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Figure 77.  VHH IA1 and VHH 9G8, like matuzumab, do not compete with ligand.

(A-D) Cartoons of EGF (dark red, A), matuzumab Fab (teal, B), VHH IA1 (blue, C) and 

VHH 9G8 (violet, D) bound to domain III of EGFR (gray).  While EGF binds to the “top” of 

domain III, matuzumab and VHHs IA1 and 9G8 bind to the “side” or “bottom,” and 

clearly do not sterically clash with ligand binding.  Matuzumab makes extensive 

contacts to the C-terminal end of domain III.  (E)  A cartoon of tethered sEGFR in the 

same orientation as in (A-D). 
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Figure 78.  Comparison of the binding sites of EGF, Fab72000, VHH IA1, and VHH 

9G8. 

The EGF binding footprint (gray, A), Fab72000/matuzumab epitope (orange, B), VHH IA1 

epitope (blue, C), and VH 9G8 epitope (pink, D) are shown on surface representations of 

EGFR domain III, which is rotated 90° about a horizontal axes compared to its 

orientation in Figure 62D.  The highlighted areas indicate surface exposed atoms within 

4 Å of bound ligand or antibody.  VHH IA1 and 9G8 epitopes overlap closely, and each 

overlaps with the Fab72000 epitope, but not the ligand binding site.  Compare to the 

epitopes of FabC225 and VHH 7D12 in Fig. 64. 
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The binding of HumaxEGFr (zalutumumab) has been studied by cryo-EM and mutational 

analysis [10].  Fine epitope analysis has been used to investigate the binding of ABX-EGF 

(panitumumab) [9].  The epitopes of each of these antibodies has been found to overlap the 225 

epitope and the ligand binding region. Zalutumumab and panitumumab  have been further 

characterized by antibody competition assays.  They have been shown to compete with each 

other for binding to cell surface EGFR, and both compete with cetuximab and matuzumab [212].  

 These reports, combined with the results presented here, allow us to roughly map out the 

epitopes of these six inhibitory antibodies on the surface of domain III (Fig. 79).  Antibodies 

C225, 11F8, and 13A9 bind to similar regions of domain III, overlapping (C225 and 11F8) or 

adjacent to (13A9) the ligand binding region, but not overlapping with 425.  Antibodies 425 and 

108 bind further from the ligand binding region on domain III, spatially nearer domain IV.  

Panitumumab and zalutumumab bind intermediate epitopes, overlapping the epitopes of C225 

and 425, as well as the ligand binding site [9, 10]. 

It is notable that most characterized inhibitory EGFR antibodies bind to domain III, even 

though inhibition via domain III is not the only route towards inhibition of receptor activation.  

Antibody 2E9 inhibits activation via domain I, and trastuzumab and pertuzumab inhibit activation 

of the related RTK Her2/ErbB2 via domains IV and II, respectively.  This domain III bias in EGFR 

antibodies may partly arise from similarities in the antibody generation and screening strategies.  

The five antibodies characterized in this study were created by immunizing mice with intact cells 

or preparations from high EGFR expressing cells lines (A431 or transfected CHO), typically 

followed by screening for inhibition of ligand binding [25, 133, 136, 139, 140].  Panitumumab and 

zalutumumab were generated by similar methods using mice that produce fully human 

antibodies [177, 180].  Antibody IMC-11F8 was derived from a phage display system, but was 

identified by screening for competition with cetuximab binding to EGFR [155].  The bias towards 

domain III may also be a result of the apparent antigenic nature of the domain.  Domain III 

presents a large, relatively charged surface, free of glycosylation, and accessible to solution in 

the autoinhibited conformation of the receptor [147]. 
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Figure 79.  Binding surfaces of ligand and inhibitory antibodies on EGFR domain III.

(A)  The epitopes of inhibitory antibodies cetuximab (gold) and matuzumab (purple), and 

the binding footprint of ligand EGF (blue), are shown on a surface representation of 

EGFR domain III.  Domain III surface area involved in both cetuximab and EGF binding is 

shown in green.  (B)  The approximate epitopes of six inhibitory antibodies, and the 

binding footprint of EGF, are shown on EGFR domain III.  Binding surfaces determined 

from crystallographic studies are outlined by dashed lines [2, 5, 6].  Epitopes of mAbs 

13A9 and 108 (black) are inferred from surface mutation (Figs. 43, 44) and antibody 

competition studies (Fig. 45).  The epitopes of panitumumab and zalutumumab (red) are 

inferred from biochemical studies [9, 10]. 
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4.1.2 mAb 108, mAb 2E9, and negative cooperativity 

We find that antibodies 108 and 425 have at least partially overlapping epitopes and 

directly compete for binding to sEGFR.  However, mAb108, but not mAb425, inhibits “high-

affinity” EGF binding to receptors at the cell surface [25, 136]. Multiple hypotheses have been 

presented to explain the phenomena of heterogeneous receptor binding to cells, including 

binding to extended and inactivated receptor populations, heterogeneous receptor density [125] 

at the cell surface, the involvement of an external interaction partner [126], and negative 

cooperativity [127].  Different explanations may be proposed to explain this inhibitory behavior of 

mAb 108, to address these different hypotheses.  It is difficult to extrapolate from results 

observed in the context of purified EGFR extracellular region to events at the cell surface, since 

“heterogeneity” in ligand binding is not observed in solution with purified sEGFR [124].   

If the effects of mAb 108 and 2E9 arise in the context of negative cooperativity, they 

may function by stabilizing different conformations or states of the EGFR dimer.  Antibody 2E9, 

which recognizes domain I of the receptor, might prevent or disfavor formation of a symmetric 

2:2 dimer, but not an asymmetric 1:2 dimer (ligand:EGFR).  Conversely, mAb 108 might restrict 

formation of an asymmetric 1:2 dimer, but not a symmetric 2:2 dimer.  The lack of molecular 

understanding of the details of ligand binding at the cell surface, and the absence of a crystal 

structure of Fab108 or Fab2E9 bound to receptor, makes it difficult to test these hypotheses. 

4.1.3 Partial inhibition of ligand binding by antibodies 13A9, 108, and 425 

Biacore competition studies indicate that antibodies C225 and 11F8 essentially abolish 

sEGFR binding to ligand, while binding is only partly diminished by antibodies 13A9, 108, and 

425.  For binding to ligand to occur at all in the presence of saturating amounts of high affinity 

ligand indicates that these latter antibodies do not directly compete with ligand binding to EGFR.  

Rather, the observed decrease in binding is likely due to steric constraints experienced by the 

binding of antibody:sEGFR complex to immobilized ligand.  While the concentration of sEGFR in 

these competition experiments (600 nM) is nominally above the KD for the EGF/sEGFR 
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interaction (130 nM), the antibody:sEGFR complex likely binds immobilized ligand with 

diminished affinity. 

We also observe that the presence of excess Fab fragments of 108, 425, and 13A9 

results in a greater fold decrease in receptor binding than caused by intact mAbs.  Rather than 

attribute this difference to enhanced competition by the Fab, we suggest that it arises from the 

stoichiometric nature of the assay.  The magnitude of the SPR response is generally proportional 

to the average mass of the material bound to the chips surface.  Thus, binding of a Fab:sEGFR 

complex would be expected to produce ≈ 57% the SPR response of a mAb:sEGFR complex, 

and ≈ 42% the response of a mAb:2·sEGFR complex.  This correlates with the relative response 

values observed for Fab and mAb in Figure 46B, though we cannot conclusively determine 

whether a 1:1 or 1:2 mAb to sEGFR complex binds in the mAb competition experiments. 

4.1.4 Selective competition of TGFα by 13A9 

Activation of EGFR by the ligands EGF and TGF  has been shown to elicit different 

cellular responses [140].  The selective inhibition by mAb 13A9 of TGFα, but not EGF, binding 

has long been an interesting observation in the literature [140].  Our data place the 13A9 epitope 

near the surface of domain III that binds the C-terminal peptide regions of mature EGF and TGFα 

(Figs. 44 & 79).  This concurs with studies utilizing chimeric TGFα/EGF ligands, which implicate 

the C-terminal region of mature ligand as most responsible for the differential competition [130].  

The reason for this is not immediately apparent from the sequences of the ligands, as the 

terminal region of EGF is actually longer than that of TGFα by four amino acids. 

Based on the X-ray crystal structures of sEGFR in complex with EGF [2] and TGFα [1], 

we note three key differences that may account for the differential selectivity of mAb 13A9 (Fig. 

80).  First, domains I and III occupy slightly different relative positions in the EGF bound and 

TGFα bound receptor structures (Fig. 80A), resulting in a RMSD of 1.27Å in the first repeat of 

domain I (E2-V36 of mature EGFR).  Steric clashes between bound 13A9 and domain I may 

contribute to the ability of 13A9 to selectively block high-affinity bivalent binding to TGFα but not 
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Figure 80.  Differences between the structures of EGF and TGFα bound to sEGFR 

may account for the selectivity of mAb 13A9. 

(A) A cartoon of the overlaid structures of EGF (red) bound to EGFR (gray) (PDB: 1IVO) 

and TGFα (yellow) bound to EGFR (blue) (1MOX).  The approximate epitope of mAb 13A9 

is circled (Fig. 44).  A domain I α-helix located above the mAb 13A9 epitope occupies 

different positions in EGF and TGFα bound structures, and is nearer the epitope in the 

TGFα bound structure.  (B)  The loop between the first two cysteines of ligand packs 

against EGFR in the structure of bound EGF, but projects into solvent in the TGFα 

structure.  (C) EGF possesses a longer C-terminal region than TGFα.  The charged C-

terminus of TGFα lies near the 13A9 epitope, and may interfere with 13A9 binding.  
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to EGF.  This hypothesis could be tested by assessing the effects of bound 13A9 on the binding 

of ligand to domain III alone.  Second, the loop between the first and second cysteines (C6 – 

C14) of mature EGF packs against the receptor, while the corresponding segment of bound 

TGFα (C8 – C16) projects outward into solvent (Fig. 80B).  This region is within ≈ 30 Å of the 

approximate 13A9 epitope.  The “length” of a typical Fab fragment (from the paratope surface to 

the C-termini) is ≈ 60 Å.  If 13A9 binds domain III at an angle, with respect to the paratope 

surface, steric effects between bound TGFα and 13A9 may be possible.  Finally, the terminal 

residue of TGFα, A50, and the corresponding residue of EGF, W49, are both ordered [1, 2].  The 

negatively charged carboxy-terminus of TGFα may repulse an acidic region on the 13A9 Fab 

region, destabilizing simultaneous binding (Fig. 80C).  

These arguments suppose that the mode of interaction between receptor and ligand 

observed in the crystal structures of EGF and TGFα bound to EGFR are the only ones that occur 

in solution.  It is conceivable that binding modes other than these occur, and that the 

competitive selectivity of mAb 13A9 arises from these ligand bound states.  

4.1.5 VHH vs Fab binding to EGFR 

Crystal structures have been reported of VHHs bound to proteins, including complexes 

with lysozyme [33, 195, 213-216], RNase A [207, 217], pancreatic β amylase [34] , and the 

bacteriophage P2 receptor binding protein [209] (in which VHH was utilized as a crystallization 

aid).  To our knowledge, the complexes described here of VHH bound to sEGFR represent the 

first crystal structures of inhibitory VHHs bound a clinically relevant target. 

Inhibitory VHHs 7D12, IA1, and 9G8 all recognize EGFR domain III.  This region of EGFR 

has been noted as particularly antigenic [147], and is recognized by most of the characterized 

conventional inhibitory mAbs (Table 6) [128].  This is partly because domain III provides a large 

and relatively flat epitope, against which the Fab region may engage much of its relatively flat 

antigen binding surface.  Planar interfaces are observed in the complex structures of FabC225, 

FabIMC-11F8, and FabEMD72000.   
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In contrast to Fab fragments, the available antigen recognition surface of VHHs is 

convex or wedge shaped, due both to the typically elongated CDR3 and to the absence of the 

VL domain.  While VHHs exhibit variability in their mode of antigen binding [34], there is 

speculation that these fragments are especially suited to binding pockets or clefts.  Such 

interactions would maximize the contact area between VHH and antigen, and may contribute to 

the nanomolar affinity achieved by some VHHs in spite of a smaller variable region [218].  For 

example, VHH cAb-Lys3 binds a cleft shaped epitope on lysozyme, resulting in an interaction 

surface area values on par with Fabs that bind this antigen [208].   

In spite of the expected preference for a concave epitope, each of the VHHs 

characterized here makes ordered contacts with EGFR over a relatively planar surface.  Rather 

than project outward as observed in the cAb-Lys3/lysozyme complex, the CDR3 of each anti-

EGFR VHH folds back against the antibody, stabilized by van der Waals contacts (though not by 

disulfide bonds, as often occurs in camel HCAbs [189]).  VHH 7D12 binds to a relatively planar 

epitope on EGFR domain III, stabilized largely by contacts to the folded portion of CDR3.  VHHs 

IA1 and 9G8 bind EGFR in a cleft formed between domains II and III.  However, ordered 

contacts are only observed between VHH and sEGFR domain III, also involving residues from 

the folded portion of CDR3.  In none of the VHH/EGFR structures are ordered contacts made 

along a cavity-shaped epitope. 

We observe that these VHHs interact with domain III at an angle, engaging less than the 

entire theoretical interaction surface.  Consequently, VHH binding buries a smaller surface area, 

with weaker associated KD values, than binding of conventional antibodies to ErbB receptors [5, 

6, 24, 31, 147] (Table 10).  Structures of Fab fragments bound to EGFR reveal excluded surface 

area values between 758 and 932 Å2 (around the typical range for antibody/antigen interactions, 

≈ 750 – 900 Å2 [219]), compared to 683 – 755 Å2 for VHH/EGFR binding. 

4.1.6 Possible changes in EGFR conformation induced by VHH IA1 and 9G8 

We note a difference in the position of domain I in the VHH IA1 and VHH 9G8 ternary 

complexes versus the FabC225/sEGFR complex (Fig. 72).  This difference could be the result of 



 155   

steric effects of bound VHH IA1, or of inherent flexibility in sEGFR.   The tether region in the VHH 

IA1 complex structure is too poorly ordered to determine if tether stabilizing contacts are 

maintained.  However, the same region of sEGFR is better ordered in the VHH 9G8 complex 

structure, where it is apparent that at least some tether contacts are preserved (Fig. 81). 

The crystallographic data for the VHH 9G8 complex yields interpretable electron density 

in the region of the EGFR domain II/IV tether interaction.  These contacts consist of four 

hydrogen bonds between the domain II tether and domain IV, which partially stabilize the 

unliganded receptor conformation [14, 17].  In the VHH 9G8 complex we clearly observe two of 

the four stabilizing hydrogen bonds (one between the backbone carbonyl of Y251 and the side 

chain of H566, and another between the side chains of Y246 and D563) indicating that the tether 

is not sterically disrupted in this complex structure.  The conformational similarity between the 

VHH IA1 complex and VHH 9G8 complex leads us to conclude that tether contacts occur in 

both structures.   

To enter the extended conformation, a series of interactions between must be broken 

between the globular portion of domain III and the region 305-312 of EGFR.  This includes R310, 

which breaks its interaction with E376 and faces away from the receptor.  VHH IA1 interacts with 

R310 in the tethered conformation, increasing the energetic cost of leaving the tethered state.  

Moreover, bound VHH IA1 sterically prevents domain II from adopting the position observed in 

the extended state of the receptor.  Thus VHH IA1 noncompetitively inhibits EGFR activation.  

VHH IA1 stabilizes the tethered conformation and, like matuzumab, sterically blocks adoption of 

the extended conformation. 

4.1.7 Comparison of VHH inhibitors to cetuximab and matuzumab 

The VHH fragments in this study can be classified into two categories of inhibitory 

antibody, typified by cetuximab and matuzumab.  Like cetuximab, VHH 7D12 is a competitive 

inhibitor.  Its epitope overlaps the ligand binding site on domain III of EGFR, and bound VHH 

7D12 sterically prevents adoption of the extended conformation.  VHHs IA1 and 9G8, by 
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Figure 81.  Tether contacts occur in the VHH 9G8 complex structure. 

(A)  A cartoon of the VHH 9G8 (violet)/FabC225 (black)/sEGFR (green) structure is 

shown (B) A zoomed in view in the same orientation as (A) shows a ribbons trace of the 

EGFR tether region from the 9G8 (green) and IA1 (red) complex structures.  The overall 

conformations of these two structures overlap closely.  (C)  The tether region of sEGFR 

from structure 1NQL.  The tether is stabilized by hydrogen bonds bewteen domain IV 

(red) and domain II (blue).  (D)  A 1.5 σ 2fO-fC map is shown over a cartoon of the tether 

region of the VHH 9G8 complex.  Hydrogen bonds are predicted between EGFR H566 

and the domain II tether backbone, and between D563 and Y246.  The side chain of 

K585 is not modeled in this structure. 
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contrast, sterically block the extended conformation and dimerization without directly competing 

for ligand binding to domain III.  As therapeutic agents, VHHs IA1 and 9G8 have a potential 

advantage, in that their activity is not diminished in the presence of excess ligand. 

We have not characterized the inhibitory characteristics of these antibodies on ligand 

binding to the apparent high- and low-affinity receptor populations at the cell surface.  Epitope 

mapping studies indicate that mAb 108, which specifically blocks high-affinity binding, binds 

EGFR domain III near the VHH IA1 and 9G8 epitopes (Fig. 79).  These VHH inhibitors may exhibit 

similar effects, which would make them useful tools in understanding the origin of high- and low-

affinity receptor populations.  Cell based studies of receptor binding will help to further 

characterize these VHHs. 

It is not clear to what extent EGFR domain II stabilizes binding of VHH IA1 and 9G8.  

These VHHs do not tightly bind sEGFRd3 in solution, which may be due to the presence of the 

LEEK sequence in sEGFRd3, or to the absence of critical interactions to domain II (or a 

combination of both effects).  These possibilities may be addressed by measuring binding to 

VHH by alternative sEGFR truncation constructs, incorporating domain III and portions of 

domain II.  If binding of VHH IA1 and 9G8 is not stabilized by interactions to domain II, there may 

be the potential for a more extensive contact surface.  It is possible that structurally guided 

alterations of VHH framework residues may promote stable contacts with domain II, which in 

turn may increase the affinity of the interaction and stabilize the tethered conformation of 

sEGFR. 

4.1.8 VHHs as next-generation anti-EGFR therapeutics 

As touched upon in the introduction, there are dissatisfactions with conventional mAbs 

as therapeutic agents.  Monoclonal antibodies are often associated with immune mediated side 

effects (often rashes and inflammation), require expensive and elaborate eukaryotic expression 

systems, and are laborious to clone and modify.  Therapies based on VHH fragments offer 

advantages over mAbs in some respects, as well as certain inherent limitations. 
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The glomerular filtration barrier restricts the passage of plasma components into the 

urine on the basis of charge, shape, and size.  The upper size limit for passage through this 

barrier is approximately 70 kDa (roughly the mass of serum albumen) [220, 221].  VHH fragments 

(≈15 kDa) are cleared relatively rapidly by the kidneys, whereas mAbs (≈150 kDa) are cleared 

slowly by metabolically pathways.  The elimination half-life (t1/2) of a VHH in mouse is on the 

order of 90 min [218].  By contrast, t1/2 of mAb is on the order of days (≈2 days for cetuximab in 

mice [222]; ≈1 – 5 days for cetuximab in humans [223]; ≈4 – 10 days for matuzumab in humans 

[224]; ≈20 days for trastuzumab in humans [225]). 

The much shorter VHH t1/2 detracts from their utility as cancer therapeutics.  An 

efficacious course of treatment with inhibitory anti-EGFR mAbs attempts to achieve bioavalable 

levels of antibody over weeks.  There has been investigation into ways to alter VHH 

pharmacokinetics.  The mass and hydrodynamic size of antibody fragments, and thus their 

elimination t1/2, may be increased by conjugation to polyethylene glycol (PEGylation [226]).  VHH 

fragments may be concatenated, which increases the fragment mass [199].  Multivalent VHH 

constructs have also been created that bind album in addition to their primary epitope, which 

was found to increase the circulating t1/2.    

This potential to “tune” VHH t1/2 may be a benefit.  While a longer t1/2 may be desirable in 

some applications (for instance, conventional mAb based cancer therapies), relatively rapid renal 

clearing may be preferable in others.  One such application may be the targeted delivery of 

radionuclides or toxins to tumor cells, in which case high tumor affinity and specificity but rapid 

elimination may be useful. 

4.1.9 Conclusions 

The data presented here serve to illustrate the heterogeneity in binding found among 

inhibitory antibodies directed against EGFR.  These antibodies exhibit multiple modes of 

receptor inhibition and different degrees of ligand competition, and have proved to be valuable 

tools for dissecting the details of receptor function.  Our work supports efforts to generate 

antibodies with unique inhibitory properties, or antibodies directed against unutilized regions of 
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the receptor.  The development of novel antibodies may prove useful as improved therapeutics, 

in combination therapies with existing drugs (i.e., to elicit ADCC [212]), and as biochemical tools 

to probe the details of EGFR activation. 
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5.  Experimental Methods 

5.1 Cloning and molecular biology 

Standard cloning techniques were used.  All sequencing and PCR primers were checked 

and modified, where necessary, to avoid self-dimers and strong single strand hairpin formation 

[227].  Typical PCR conditions included 50 ng of template DNA, 250 ng of each primer 

(Integrated DNA Technologies), 2 μL 10 mM dNTP mix (Invitrogen), 3.5 U of PfuUltra polymerase 

(Stratagene), 10 μL 10× reaction buffer, in a reaction volume of 100 μL.   Restriction enzymes 

were obtained from NEB.  DNA ligations were performed with the DNA Ligation Kit 2.1 (Takara), 

and incubated ON at 16°C.  The sequences of all PCR-generated DNA were confirmed. 

 

5.2 Expression and purification of proteins 

5.2.1 Vps74 

The VPS74 locus was amplified by PCR and cloned into pET-28a (EMD), encoding a 

hexa-histidine (H6) tag and a T7 epitope tag at the N-terminus of the protein (T7-Vps74), or into 

modified pET-21a (EMD) containing a tobacco etch virus (TEV) protease cleavage site [228] 

between the N-terminal hexa-histidine tag and the multiple cloning site (H6-Vps74).  PCR 

methods were used to generate vectors to express altered forms of Vps74. 

To produce bacterial lysates, T7-Vps74 was expressed in E. coli BL21 (DE3) (EMD) by 

induction with IPTG for three hours at 37°C.  Cells were lysed in PBS (phosphate buffered saline, 

25 mM NaH2PO4/Na2HPO4, 150 mM NaCl, pH 7.5) containing 1X Complete Mini protease 

inhibitor cocktail (Roche) using lysozyme and sonication. Clarified lysate was stored at -80º C. 

To produce pure Vps74, H6-Vps74 or T7-Vps74 (or relevant variants) were expressed in 

BL21-CodonPlus (DE3) RP E. coli (Stratagene) in lysogeny broth (LB).  Overexpression was 

induced by 0.5 mM IPTG (isopropyl β-D-1-thiogalactopyranoside, Acros Organics) at an optical 

density of 0.6, followed by 3 h growth at 37ºC. Selenomethionine-derivitized protein (SeMet-

Vsp74) was expressed in B834 (DE3) E. coli (Novagen) in simplified minimal medium [229].  

Briefly, cells were grown to an OD of 0.6 in LB, pelleted, resuspended in PBS, pelleted again, 
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Figure 82.  Vps74 purification.

Representative FPLC traces and Coomassie stained SDS-PAGE gels from the 

purification of full length Vps74. 
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resuspended in simplified minimal medium (2% glucose, 2.5 mM MgSO4, 19 mM NH4Cl, 22 mM 

KH2PO4, 22 mM Na2HPO4, 10 mg thiamine, 10 mg Fe2(SO4)3, 50 mg L-selenomethionine, pH 7.4), 

and overexpressed overnight at 20°C by the addition of 0.5 mM IPTG. 

Cells were lysed by sonication (3 rounds of 25 s total, 50 % amplitude, 1 s on/2 s off) in 

25 mM Na2HPO4/NaH2PO4, 250 mM NaCl, 10% glycerol, pH 8.0.  Whole lysates were clarified by 

45 min centrifugation at 35,000 rcf in a SS-34 rotor.  Clarified lysates were applied to a nickel-

nitrilotriacetic acid (Ni-NTA, Qiagen) affinity column by gravity flow.  Protein was eluted by a step 

gradient of increasing imidazole concentration (fractions of 25, 50, 100, 150, 200 mM imidazole 

in 25 mM  Na2HPO4/NaH2PO4, 250 mM NaCl, pH 8.0).  TEV protease (150 μg / 5 mg Vps74) was 

added to eluted H6-Vps74 and the proteins dialyzed overnight against 50 mM Tris, 50 mM NaCl, 

1 mM DTT, pH 8.0 [228].  The cleaved tag, uncleaved H6-Vps74, and TEV (which is also his-

tagged) were removed by incubation with 50 μL of Ni-NTA resin.  TEV-digested Vps74 or 

undigested T7-Vps74 were purified by anion exchange chromatography (Source 15Q, GE 

Healthcare) and were eluted by a 5 column volume linear gradient of 50 mM to 300 mM NaCl in 

10 mM HEPES, 1 mM DTT, pH 7.5.  Proteins were further purified by size exclusion 

chromatography (Superose 12, GE Healthcare), in 10 mM HEPES, 150 mM NaCl, pH 7.5.  

Purified protein was concentrated to 10 mg/ml and stored in 10 mM HEPES, 150 mM NaCl, 1 

mM TCEP, pH 7.5 at 4°C. Incorporation of selenomethionine into SeMet-Vps74 was assessed 

by matrix assisted laser desorption ionization mass spectrometry (MALDI MS), and was 

determined to be near 100%. 

5.2.2 Golgi protein GST-fusions 

Golgi protein-GST fusion proteins were generated by the introduction of the first 15 

codons of KRE2, MNN2, MNN5, and OCH1 upstream of the GST open reading frame of pGEX-

KG (GE Healthcare), and a stop codon before the multiple cloning site. Use of an NcoI cloning 

site altered codon 2 of MNN2 and MNN5 (Leu to Val), and of OCH1 (Ser to Ala). Dr. David 

Katzmann (Mayo Research Foundation) provided the Cps1-GST fusion plasmid. 



 163   

GST fusion proteins were expressed in E. coli BL21 (DE3) (Novagen) by induction with 

IPTG overnight at 22ºC.  Cell were lysed in PBS containing 1X Complete Mini protease inhibitor 

cocktail (Roche) using lysozyme and sonication. Clarified lysate was stored at -80º C. 

5.2.3 GOLPH3 

GOLPH3 was expressed either from a pET-28a vector (EMD) to produce N-terminally H6 

and T7 tagged proteins (T7-GOLPH3) or from a pET-21a vector (EMD) modified to introduce an 

N-terminal H6 tag followed by a tobacco etch virus (TEV) protease cleavage site [228] (H6-

GOLPH3).  PCR methods were used to generate vectors to express altered forms of GOLPH3. 

To produce pure GOLPH3, the relevant protein was expressed in BL21(DE3) (EMD; T7-

GOLPH3) or Rosetta2(DE3)pLysS E. coli (EMD; H6-GOLPH3).  Overexpression was induced by 

the addition of 0.5 mM IPTG at a culture density of 0.6 OD, for 3 h at 37°C.  Selenomethionine 

labeled H6-GOLPH3Δ51 (SeMet-GOLPH3Δ51), lacking the N-terminal 51 amino acids of 

GOLPH3, was expressed in B834(DE3) E. coli (EMD) in simplified minimal medium [229], as 

described for Vps74. 

GOLPH3 exhibited a tendency to precipitate at various points during its purification, 

particularly at high protein concentration.  Solubility was improved by the use of buffers ≥ pH 

8.5, > 150 mM NaCl, and ample reducing agent where practical throughout the purification.     

Cells were lysed by sonication (3 rounds of 25 s total, 50 % amplitude, 1 s on/2 s off) in 

25 mM Na2HPO4/NaH2PO4, 250 mM NaCl, 10% glycerol, pH 8.0.  Whole lysates were clarified by 

45 min centrifugation at 35,000 rcf in a SS-34 rotor.  Clarified lysates were applied to a Ni-NTA 

(Qiagen) affinity column by gravity flow.  Protein was eluted by a step gradient of increasing 

imidazole concentration (fractions of 25, 50, 100, 150, 200 mM imidazole in 25 mM 

Na2HPO4/NaH2PO4, 250 mM NaCl, pH 8.0).  β-mercaptoethanol (BME) was added to each 

imidazole fraction upon elution, to a final concentration of 5 mM.  TEV protease (150 μg / 5 mg 

GOLPH3) was added to eluted H6-GOLPH3, and the proteins were dialyzed for 2 h at RT, then 

overnight at 4°C, against 50mM Tris, 250mM NaCl, 5 mM BME, 1 mM EDTA, pH 8.0.  The 
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Figure 83.  GOLPH3 purification.

Representative FPLC traces and Coomassie stained SDS-PAGE gels from the purification 

of full length GOLPH3. 
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cleaved H6-tag, uncleaved H6-GOLPH3, and TEV (which is also his-tagged) were removed by 

incubation with 50 μL of TALON resin (Clontech).  TEV-digested GOLPH3 or undigested T7-

GOLPH3 were purified by anion exchange chromatography (Source 15Q, GE Healthcare) and 

were eluted by a 5 column volume linear gradient of 50 mM to 300 mM NaCl in 10 mM TAPS, 5 

mM BME, pH 9.0.  Proteins were further purified by size exclusion chromatography (Superose 

12, GE Healthcare) in 10 mM bicene, 300 mM NaCl, 5 mM BME, pH 8.5.  Purified protein was 

concentrated to 10 mg/mL, buffer exchanged in a spin concentrator (Vivaspin; Sartorius) into 

buffer lacking reducing agent, and stored in a buffer of 10 mM bicene, 300 mM NaCl, 5 mM 

TCEP, pH 8.5. 

5.2.4 sEGFR 

DNA encoding the soluble extracellular region of EGFR, comprising upstream signal 

sequence as well as codons 1-618 of the mature protein, was cloned into pFastBac I (Invitrogen) 

as described [230].  The following sEGFR variants were generated (residue numbers refer to 

those of mature EGFR): sEGFR, amino acids 1-618; sEGFR501, amino acids 1-501; sEGFRd1, 

amino acids 1-183; sEGFRd3, amino acids 1-4 (LEEK) fused to amino acids 310-514.  sEGFR 

point mutants were generated by standard PCR methods. 

sEGFR proteins were expressed as secreted soluble protein by baculovirus infection of 

Sf9 cells (clonal isolates of fall armyworm, Spodoptera frugiperda, ovarian cells).   Except where 

indicated, cells were maintained as suspension cultures at 27°C in Sf-900 II serum free medium 

(Invitrogen) supplemented with 50 U/mL penicillin, 50 μg/mL streptomycin (Gibco).  Baculovirus 

and Sf9 methods were adapted from the BacToBac system (Invitrogen). 

Vectors were transformed into DH10Bac E. coli (Invitrogen) by heat shock, followed by 5 

h incubation in LB at 37°C.  Transformants were incubated on LB agar plates containing 50 

μg/mL kanamycin, 7 μg/mL gentamicin, 10 μg/mL tetracycline, 100 μg/mL Bluo-gal (Invitrogen), 

and 40 μg/mL IPTG (Acros Organics) for 24 h at 37°C, followed by >48 h at room temperature.  

Bacmid recombination was identified by white colony color.  Positive colonies were subcultured 
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Figure 84.  EGFR purification.

Representative FPLC trace and Coomassie stained SDS-PAGE gels from the 

purification of wild type sEGFR. 
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into 5 mL LB with antibiotics, and incubated overnight.  Bacmid was purified with a Plasmid Mini 

kit (Qiagen).  The presence of the expression sequence was confirmed by PCR. 

6-well plates were seeded with 9×105 Sf9 cells per well and incubated for 1 h at 27°C to 

promote adhesion.  For each bacmid construct, a bacmid dilution (10 μL of purified bacmid, 100 

μL unsupplemented medium) was mixed with a dilution of Cellfectin (Invitrogen) (6 μL Cellfectin, 

100 μL unsupplemented medium), and incubated for 30 min at room temperature.  Wells were 

washed with 2 mL unsupplemented medium.  800 μL unsupplemented medium was added to 

each bacmid/Cellfectin mixture, and the resulting solution (≈ 1 mL) was applied to well of cells.  

Plates were incubated overnight, after which the medium was replaced with Sf-900 II medium 

containing penicillin/streptomycin.  Plates were incubated for 6 – 7 days at 27°C. 

Medium containing baculovirus was harvested and clarified by 5 min 1000 rpm 

centrifugation.  Fetal bovine serum (2% final concentration) was added to the recovered 

supernatant (P0 virus isolate), and the resulting primary virus isolate was stored at 4°C.  Cell 

debris from centrifugation were analyzed by immunoblot with Tetra-His antibody (Qiagen) to 

confirm the presence of expressed protein.  Virus was amplified by the infection of a T75 flask 

(TPP) containing 10 million cells in 15 mL of medium with 150 μL of primary virus isolate.  After 6 

days of infection, medium was clarified by 5 min centrifugation at 1000 rpm.  Fetal bovine serum 

(2% final concentration) was added to the clarified medium, and the resulting P1 virus stock was 

stored at 4°C. 

For large scale protein production, P2 virus was generated similarly to P1 stocks, but by 

infection of T75 flasks with 150 μL of P1 stock.  Sf9 suspension cultures in sidearm bioreactor 

flasks (0.5 L culture volume per 1 L flask; Cytostir, Kontes) were infected at 2.5 – 3×106 cells/mL 

with 15 mL P2 virus per 500 mL culture.  Four days after infection, medium was clarified by 20 

min 5000 rcf centrifugation.  0.5 mM phenylmethanesulphonylfluoride (PMSF) was added, and 

clarified medium was diafiltered against > 3 volumes of 25 mM Tris, 150 mM NaCl, pH 8.0, using 

a 30 kDa or 10 kDa (for sEGFRd3, sEGFRd1, and sEGFR239) Prep-Scale-TFF cartridge 

(Millipore).  Conditioned medium was applied to a Ni-NTA column, and protein was eluted by a 
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step gradient of imidazole (25, 50, 100, 150, 200 mM) in 25 mM Na2HPO4/NaH2PO4, 250 mM 

NaCl, pH 8.0.  sEGFRd3 only was dialyzed into 10 mM Hepes, 25 mM NaCl, pH 8, and purified 

over a Source 15S cation exchange column (GE Healthcare) by a 5 column volume linear 

gradient of 25 – 500 mM NaCl, 10 mM HEPES, pH 8. All sEGFR constructs were purified by size 

exclusion chromatography over a Superose 6 (GE Healthcare; sEGFR, sEGFR501) or Superose 

12 (GE Healthcare; sEGFRd3, sEGFRd1, sEGFR239) column in 10 mM HEPES, 150 mM NaCl, 

pH 8.  Purified proteins were concentrated to approximately 10 mg/mL in size exclusion 

chromatography buffer. 

5.2.5 VHH antibody fragments 

DNA of VHH antibody constructs 7D12, IA1, and 9G8 was obtained from R. Roovers, 

PhD (Utrecht University, Netherlands) and cloned into pET-22b (EMD).  Protein for crystallization 

included a C-terminal hexa-histidine tag (VHH-H6) immediately preceding the stop codon.  

Protein for binding experiments included a C-terminal biotinylation sequence 

(GLNDIFEAQKIEWH) [231] recognized by E. coli biotin holoenzyme synthetase, BirA, followed by 

a hexa-histidine tag (VHH-AVI).  An upstream pelB leader sequence directed periplasmic 

expression.  Variants wit site directed alterations were generated by standard PCR methods.   

VHH proteins were overexpressed by overnight lactose auto-induction [232, 233] at 

25°C in LB supplemented with 12.5 mM Na2HPO4, 12.5 mM KH2PO4, 6.25 mM (NH4)2SO4, 5 mM 

Mg2SO4, 10 mM MOPS, 0.5% glycerol, 0.5% lactose, 0.5% disodium succcinate, and 0.05% 

glucose.  Cells were pelleted, resuspended in 25 mM Na2HPO4/NaH2PO4, 150 mM NaCl, 10% 

glycerol, pH 8.0, and frozen.  Resuspened pellets were thawed, cells were repelleted, and the 

supernatant was further clarified by 30 min 15000 rcf centrifugation.  Clarified supernatant was 

applied to a Ni-NTA column and eluted by a step gradient of imidazole (25, 50, 100, 150, 200 

mM) in 25 mM Na2HPO4/NaH2PO4, 250 mM NaCl, pH 8.0.  Protein was further purified over a 

Superose 12 size exclusion column (GE Healthcare) in 10 mM HEPES, 150 mM NaCl, pH 8.0, at 

room temperature.  Purified protein was concentrated to 5 – 20 mg/mL.  VHH proteins exhibit 
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Figure 85.  VHH purification.

Representative FPLC trace and Coomassie stained SDS-PAGE gels from the purification 

of VHH 7D12-AVI.  VHH fragments exhibit high thermal stability.  VHH constructs 

frequently produced high molecular weight smears and disulfide bonded artifacts on 

gels (7D12-AVI* on the lower gel). 
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cold-induced insolubility at high concentrations, and purified protein was stored at 

approximately 20°C. 

5.2.6 Monoclonal antibody fragments 

Monoclonal antibody C225 and FabC225 were provided by Imclone, Inc.  Monoclonal 

antibody 13A9 was provided by Genentech, Inc.  Monoclonal antibody 425 was a generous gift 

from Prof. Ulrich Rodeck (Jefferson University), and monoclonal antibody 108 from Profs. 

Joseph Schlessinger and Irit Lax (Yale University).  The Fab fragments from mAb 425, mAb 108 

and mAb 13A9 were prepared by papain cleavage and protein A purification using the Pierce 

Fab Preparation Kit (Thermo Scientific) and used without further purification.  For C225 and 425, 

where the precise amino acid sequence is known, Fab concentrations were determined using 

calculated molar extinction coefficients.  For 108 and 13A9, molar extinction coefficients were 

estimated based on protein concentrations determined using Bradford protein assays (BioRad) 

calibrated with standard curves determined using bovine gamma globulin. 

 

5.3 Crystallographic methods 

All crystals were grown by hanging drop vapor diffusion at 22°C. 

5.3.1 Vps74 

0.5 μL of 10 mg/mL purified Vps74 or SeMet-Vsp74 was mixed with an equal volume of 

8% PEG3350, 5% ethylene glycol, 50 mM MES, 50 mM NaCl, 50 mM CaCl2, 10mM EGTA, pH 

6.0 (crystallization buffer), and suspended over 300 μL crystallization buffer. Hexagonal crystals 

(75 × 75 × 300 μm) (Fig. 4) formed and grew to full size in approximately two weeks, and were 

cryo-stabilized by brief exposure to crystallization buffer supplemented with 15% ethylene 

glycol, and flash frozen in liquid nitrogen. Vps74Δ59 crystals were generated similarly, but grown 

in 5% glycerol, 15% PEG3350, 100 mM citrate, 0.75 M KCl, 50 mM EGTA, pH 6.0, and 

stabilized in this buffer containing 15% glycerol. 



 171   

X-ray diffraction data were collected at CHESS F1 and APS ID-23 D beamlines.  The 

presence of selenium in SeMet-Vps74 was verified at APS ID-23 D by an excitation scan 

(intensity as a function of emission wavelength).  Selenium peak and inflection wavelengths were 

chosen, and anomalous-scattering factors f'' and f' were estimated, on the basis of a 

fluorescence scan (fluorescence intensity as a function of excitation wavelength), using the 

program CHOOCH [234].  Low beam attenuation and relatively long exposure times were 

required to collect highest resolution data, which led to radiation induced damage of crystals 

and loss of diffraction.  Consequently, we were unable to collect three wavelength anomalous 

data on a single SeMet-Vps74 crystal.  Peak and remote datasets were collected from a single 

crystal and the inflection dataset from a second crystal. 

Datasets were indexed, integrated, and scaled with HKL-2000 [235].  The three 

anomalous datasets were additionally scaled in the program Fshcal [8, 236].  The protein 

substructure was determined using MAD methods in the program SHELX C/D/E [237-239]. All 

but the first 61 amino acids of Vps74 could be traced in the resulting experimentally phased map 

using the program Coot [240]. The structure was refined against data from native Vps74 and 

Vps74Δ59 crystals using the programs Refmac [240] and CNS [27]. Crystallographic statistics 

are reported in Table 1. The coordinates have been submitted to the PDB:  Vps74 ID 2ZIH, 

Vps74Δ59 ID 2ZII. 

5.3.2 GOLPH3 

Drops containing 0.5 μL of 10 mg/mL SeMet-GOLPH3Δ51 and an equal volume of 

crystallization buffer (0.9 M (NH4)2SO4, 0.1 M MES, pH 6.0) were suspended over 300 μL of 

crystallization buffer.  Crystals (200 × 200 × 200 μm) (Fig. 18) were transferred to crystallization 

buffer containing 15% ethylene glycol and were flash frozen in liquid nitrogen. 

X-ray diffraction data were collected at APS beamline 23-ID B.  Data were processed 

with HKL-2000 [235].  MAD data were collected and an initial low resolution (3.6 Å) experimental 

electron density map was determined.  The structure was solved by molecular replacement with 

a complete dataset collected to 2.9 Å resolution (Table 3) in the program Phaser [241], using 
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chain A from the structure of Vps74 (PDB ID: 2ZIH) as the search model.  The GOLPH3Δ51 

model was built in Coot [240], and refined using REFMAC [8] and CNS [27].  Correct tracing of 

features of GOLPH3Δ51 distinct from the yeast homolog was confirmed by the low resolution 

experimental map (data not shown). Crystallographic statistics are summarized in Table 3.  The 

coordinates have been submitted to the PDB (ID 3KN1). 

5.3.3 VHH IA1 

0.5 μL of 18 mg/mL purified VHH IA1-H6 was combined with 1.0 μL drops of 

crystallization buffer (30% PEG3350, 0.2 M (NH4)2SO4, 0.1 M MES, pH 6.0), and was suspended 

over 300 μL crystallization buffer.  Rod shaped crystals (100 × 100 × 2000 μm) (Fig. 55) were 

flash frozen in liquid nitrogen. 

X-ray diffraction data were collected at APS beamline 23-ID B.  Data were processed 

with HKL-2000 [235].  The structure was solved by molecular replacement in the program 

Phaser [241], using the framework region of a hapten binding camelid VHH domain (PDB ID: 

1I3V) as the search model.  The VHH IA1 model was built in Coot [240], and refined using 

REFMAC [8] and CNS [27].  Data collection and refinement statistics are summarized in Table 9. 

5.3.4 VHH 7D12/sEGFRd3 

The complex between VHH 7D12-H6 and sEGFRd3 crystallized in two crystal forms, in 

distinct growth conditions. 

The first form developed in drops containing 0.5 μL of 10 mg/mL protein complex and 

0.5 μL of crystallization buffer (22.5% PEG3350, 50 mM KI, 0.1M MES, pH 6.0), suspended over 

300 μL crystallization buffer.  Hexagonal rod shaped crystals (100 × 50 × 50 μm; Fig. 59) were 

transferred to crystallization buffer containing 12.5% glycerol and were flash frozen in liquid 

nitrogen. 

X-ray diffraction data were collected at APS beamline 23-ID B.  Data were processed 

with HKL-2000 [235].  The structure was determined by molecular replacement in the program 

Phaser [241], using  as search models sEGFRd3 from the complex structure of EGFR domain III 

and Fab11F8 (PDB ID: 3B2U, chain A) and the VHH IA1 structure framework region.  The protein 
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model was built in Coot [240], and refined using REFMAC [8] and CNS [27].  The presence of an 

iodide ion was confirmed by inspection of an anomalous difference map. 

A second crystal form grew in drops containing 1.0 μL of 10 mg/mL protein complex 

and 1.5 μL of crystallization buffer (22.5% PEG3350, 0.1M sodium citrate, pH 3.5), suspended 

over 300 μL of crystallization buffer.  Crystals (100 × 100 × 200 μm; Fig. 59) were transferred to 

crystallization buffer containing 5% ethylene glycol and were flash frozen in liquid nitrogen. 

X-ray diffraction data were collected at APS beamline 23-ID B.  Data were processed 

with HKL-2000 [235].  The structure was determined by molecular replacement in the program 

Phaser [241], using  the pH 6.0 VHH 7D12/sEGFRd3 structure as the search model.  The protein 

model was built in Coot [240] and refined using REFMAC [8] and CNS [27].  Six copies of the 

VHH 7D12/sEGFR complex are observed in the asymmetric unit.  Data collection and refinement 

statistics for both crystal forms are summarized in Table 9. 

5.3.5 VHH IA1/Fab C225/sEGFR 

The ternary complex VHH IA1-H6/FabC225/sEGFR formed in drops containing 0.5 μL of 

11 mg/ml protein and 0.5 μL of crystallization buffer (17.5% P3350, 1.5M NaCl, 5% glycerol, 0.1 

M MES, pH 6.5) suspended over 300 μL of crystallization buffer.  Rod shaped crystals (75 × 75 × 

1000 μm; Fig. 65) were transferred to crystallization buffer containing 20% PEG3350 and 7.5% 

glycerol and were flash frozen in liquid nitrogen. 

X-ray diffraction data were collected at CHESS beamline F1.  Data were processed with 

HKL-2000 [235].  The structure was determined by molecular replacement in the program 

Phaser [241], using  as independent search models the structure of VHH IA1, the C225 Fv 

region, the C225 CH2/CL region, EGFR domain I - II, and EGFR domains III - IV (cetuximab and 

sEGFR models were derived from PDB ID: 1YY9).  The protein model was built in Coot [240] and 

refined using REFMAC [8] and CNS [27].  Crystal packing is extensively stabilized through 

contacts made to Fab C225 and EGFR domain III.  Consequently, Fab C225 and EGFR domain 

III are observed to be very well ordered, as are the C-terminal portion of domain II, most of 

domain IV, and the regions of VHH IA1 that contact EGFR domain III (particularly CDRs 1 and 3).  
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EGFR domain 1 projects into a solvent cavity in the crystal lattice and makes contacts only with 

VHH IA1 from a symmetry related copy of the complex.  As a result, EGFR domain 1, the N-

terminal portion of domain II, and the distal portion of VHH IA1 are poorly ordered in the crystal 

structure.  These regions have been built as predominantly backbone atoms or are entirely 

omitted in the model.  Data collection and refinement statistics are summarized in Table 9. 

5.3.6 VHH 9G8/Fab C225/sEGFR 

The ternary complex VHH 9G8-H6/Fab C225/sEGFR formed in drops containing 0.5 uL 

of 7 mg/ml protein and 2.5 μL of crystallization buffer (10% P3350, 0.1 M HEPES, pH 7.0) 

suspended over 300 μL of crystallization buffer.  Rod shaped crystals (100 × 100 × 1000 μm; 

Fig. 73) were transferred to crystallization buffer containing 15% PEG3350 and 15% ethylene 

glycol and were flash frozen in liquid nitrogen. 

X-ray diffraction data were collected at APS beamline ID 23-B.  Data were processed 

with HKL-2000 [235].  The structure was determined by molecular replacement in the program 

Phaser [241], using  the VHH IA1/Fab C225/sEGFR structure as a search model.  The protein 

model was built in Coot [240] and refined using REFMAC [8] and CNS [27].  The space group, 

unit cell, and crystal packing of the 9G8 complex are essentially identical to the IA1 ternary 

complex.  As in the IA1 complex, Fab C225 and EGFR domain III are particularly well ordered 

while EGFR domain 1 and the distal portion of VHH 9G8 are poorly ordered or absent in the final 

model.  Data collection and refinement statistics are summarized in Table 9. 

5.3.7 Structure analysis 

Shape complementarity values were determined by the SC module in CCP4, excluding 

solvent molecules.  Interactions between chains were identified by NCOTACT in CCP4, using a 

distance cutoff of 3.5 Å for hydrogen bonds and van der Waals contacts, and 4.5 Å for 

electrostatic interactions.  Average excluded surface areas were calculated by CONTACT in 

CCP4.  The fraction of buried hydrophobic surface area was determined by dividing the surface 

area of buried carbon atoms by the total.  Structural alignments and RMSD values were 
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generated within the programs Pymol or Coot, and reflect main chain atoms only, unless 

otherwise specified. 

 

5.4 Analytical ultracentrifugation 

Sedimentation velocity analytical ultracentrifugation (SV AUC) experiments were 

conducted in a Beckman Optima XL-A instrument in a An-Ti 60 rotor at 20°C.  Sample 

absorbance was monitored at 280 nm, unless specified. 

Transient rotor temperature fluctuations were occasionally observed at the beginning of 

a run.  The resulting convection currents manifest as residual fitting errors near the top of the 

solution column for the first few scans, which is correlated with an artifact at the minimum of 

the c(S) distribution.  This artifact has been truncated from the reported c(S) distributions, for 

clarity.  Otherwise, only fits producing low residuals with no systematic error are reported. 

5.4.1 Oligomeric state of Vps74 and GOLPH3 

The oligomeric state of Vps74 or GOLPH3 proteins was assayed by SV AUC at 40,000 

or 50,000 rpm, in a buffer of 150 mM NaCl, 20 mM HEPES, pH 7.5, with and without 10 mM 

EGTA and 10 mM CaCl2.  The absorbance of 50 μM Vps74 (Fig. 12) was monitored at 250 nm, 

rather than 280 nm, in order to acquire signal in the linear range of the instrument.  Readings 

were scaled by a factor of 2.1 to normalize the signal to readings taken at 280 nm (scale factor 

determined from UV absorption spectra). 

Buffer density, buffer viscosity, and the partial specific volume of sedimenting species 

were estimated by the program Sednterp [117].  Size distribution c(S) analysis of SV AUC was 

performed in the program Sedfit [242].  Approximate sedimentation coefficients were 

determined from crystal structures by the program Hydropro [243]. 

The heterogeneity of Vps74 and GOLPH3 oligomeric species, apparent from SV AUC 

(Fig. 13) and other studies (DLS and size exclusion chromatography, data not shown), 

precluded the use of sedimentation equilibrium methods to determine an accurate KD for 

oligomer assembly. 
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5.4.2 sEGFR interactions with antibodies 

VHH fragments, Fab fragments, sEGFR constructs, and combinations of these proteins 

were analyzed by SV AUC at speeds of 35,000 to 50,000 rpm, depending of the mass of the 

expected species, in 10mM HEPES, 150 mM NaCl, pH 8.0.   

Buffer density and buffer viscosity were estimated in the program Sednterp [117].  The 

partial specific volume of VHHs and Fab fragments was estimated by Sednterp on the basis of 

amino acid sequence.  The partial specific volumes of sEGFR constructs were estimated by 

Sednterp on the basis of amino acid sequence, with the additional assumption that the protein 

carries 8 N-linked glycans of 8 saccharides each.  For mixtures of species with markedly 

different estimates of partial specific volumes, an intermediate value was chosen for analysis.  

Size distribution c(S) analysis was performed with the program Sedfit [242]. 

 

5.5 Surface plasmon resonance (Biacore) studies 

Surface plasmon resonance (SPR) binding experiments were performed with a Biacore 

3000 instrument at 25˚C.   

5.5.1 Vps74/GOLPH3 binding to lipid 

Lipid vesicles containing 3% PtdIns3P, PtdIns4P, PtdIns5P, or PtdIns(4,5)P2 (Cell 

Signaling Technology) in a DOPC (Sigma-Aldrich) background were prepared using cycles of 

freeze/thaw with sonication followed by extrusion through a 0.1 μm membrane (Mini-Extruder, 

Avanti).  Lipid vesicles were immobilized on a primed L1 biosensor chip (Biacore) [91].  

Experiments were conducted in HBS buffer without surfactant (25 mM HEPES, 150 mM NaCl, 

pH 7.5).  Binding response values are reported after reference (DOPC only surface binding) 

subtraction.  Data were analyzed using Prism (version 4; GraphPad Software, Inc.). 

5.5.2 sEGFR binding to immobilized antibodies 

Monoclonal antibodies and Fab fragments were diluted to 50 μg/mL in acidic buffer and 

were immobilized to CM5 Biacore sensor chips by amine coupling, at a flow rate of 5 μL/min 
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with a 5 – 10 minute contact time.  Optimal coupling was obtained in 10 mM sodium acetate at 

pH 4.0 for Fab425 and Fab2E9, pH 5.0 for all mAbs and for Fab13A9, and pH 5.5 for FabC225 

and Fab108.  Immobilization typically resulted in a response increase of 1000 – 1500 for mAbs 

and 1500 – 5000 for Fab fragments. 

Binding of sEGFR to antibody surfaces was determined as described [5, 230].  A buffer 

containing 10 mM Hepes, 150 mM NaCl, 3 mM EDTA, 0.005% Tween 20, pH 8.0 (HBS) was 

used. 250 μL samples were passed over immobilized antibody surfaces to ensure equilibration.  

Response values at equilibrium were recorded, after subtraction of reference signal.  Surfaces 

were regenerated between data points with two 5 μL injections of 1 M NaCl at low pH (2.5 – 5.5) 

to rapidly remove residual sEGFR.  For each combination of surface and regeneration buffer, it 

was verified that multiple cycles of regeneration did not impair sEGFR binding.  A minimum of 12 

samples of a two-fold dilution series of sEGFR or variants was analyzed in order of increasing 

concentration.  The concentration range of samples was chosen to bracket the expected KD of 

the interaction, up to a maximum concentration of 4 μM.  Data were analyzed using Prism 4 

(GraphPad Software, Inc.). 

5.5.3 sEGFR binding to immobilized VHHs  

Purified VHH-AVI constructs (not exogenously biotinylated) were diluted to 100 μg/ml in 

10 mM acetate pH 5.0 and were coupled to CM5 Biacore sensor chips by standard amine 

coupling, according to the manufacturer’s recommendations.  Alternatively, purified VHH-AVI 

constructs were exogenously biotinylated by BirA [231, 233] and immobilized to streptavidin 

coated SA Biacore sensor chips.  Binding of sEGFR to immobilized VHHs was performed as for 

binding to monoclonal antibodies and Fab fragments, except for regeneration conditions.  VHH 

surfaces were found to be damaged by repeated regenerations below pH 3.5, so bound sEGFR 

was either left to dissociate from VHH surfaces during 1 h dissociation periods, or surfaces were 

briefly regenerated by a 5 μL pulse of 10 mM glycylglycine pH 3.5, 1 M NaCl.  Data were 

analyzed as for binding to immobilized antibody. 
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5.5.4 sEGFR binding to immobilized ligands 

Ligands EGF and TGFα were diluted to 200 μg/ml in 10 mM acetate pH 4.0 and coupled 

to CM5 Biacore sensor chips by standard amine coupling, according to the manufacturer’s 

recommendations.  Typical response increase after immobilization was 1000 – 1500.  Binding of 

sEGFR to these immobilized ligands was performed and analyzed as described [230].  Data 

were analyzed as for binding to immobilized antibody. 
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