985 research outputs found

    Genetic and environmental factors influence Drosophila ethanol sedation

    Get PDF
    Alcohol use disorder is a global health issue that affects a significant portion of the population, with affects including both negative mental and physical consequences. Currently, there are few treatment options available to those who suffer from alcohol use disorder, alcohol abuse, or alcohol dependence. Identifying candidate genes or environmental influences would therefore improve the means for possible treatments or identification of those people at risk for alcohol use disorder. Previous studies in humans have demonstrated an inverse association between initial sensitivity and risk for alcohol abuse. This connection allows investigators, and our laboratory, to investigate genetic and environmental factors that may influence initial ethanol sedation. Our laboratory utilizes Drosophila melanogaster (flies) as a model organism to identify these such factors influencing acute behavioral responses to alcohol. Our lab has found evidence for both environmental and genetic factors that influence initial alcohol sensitivity in flies. In one study, flies that are fed increased amounts of dietary yeast are resistant to ethanol. We have found that this ethanol resistance is related to the amount of nutrients that is consumed, which then affects alcohol uptake/metabolism, to influence initial alcohol sensitivity. Importantly, we found that serotonergic neuron function is essential for regulating the consumption of high dietary yeast media for the increased nutrient intake to occur. In two separate projects, we identified a role for myocyte enhancer factor 2 (Mef2) and nitric oxide synthase (Nos) in initial alcohol sensitivity. Mef2 was obtained via a GWAS study identifying genes with an association with initial sensitivity in humans. We found that decreasing or altering Mef2 expression, using mutants or Mef2 RNAi, resulted in flies having decreased sensitivity to alcohol. The gene Nos, came out of a previous genetic interaction screen in the laboratory. Multiple reagents to assess Nos’s role in alcohol behavior were obtained and consistent evidence from three piggyBac transposon insertion flies and, importantly, a Nos null fly, demonstrate that decreased Nos expression results in increased ethanol sensitivity. Other preliminary results suggest that Nos expression during adulthood, as well as the mechanism of S-nitrosation, may be important for ethanol sedation in Drosophila

    Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function

    Full text link
    Abuse of alcohol is a major clinical problem with far- reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol- related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast- induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet- induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol- related behavior in other species.Flies fed a high yeast diet consume more nutrients, have decreased levels of internal ethanol when exposed to ethanol vapor and require longer exposure to ethanol to become sedated (ie, increased ST50). Our studies implicate serotonergic neurons as key regulators of nutrient consumption and therefore, the effect of dietary yeast on ethanol sedation in flies.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155987/1/adb12779.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155987/2/adb12779_am.pd

    Optimum spectral window for imaging of art with optical coherence tomography

    Get PDF
    Optical Coherence Tomography (OCT) has been shown to have potential for important applications in the field of art conservation and archaeology due to its ability to image subsurface microstructures non-invasively. However, its depth of penetration in painted objects is limited due to the strong scattering properties of artists’ paints. VIS-NIR (400 nm – 2400 nm) reflectance spectra of a wide variety of paints made with historic artists’ pigments have been measured. The best spectral window with which to use optical coherence tomography (OCT) for the imaging of subsurface structure of paintings was found to be around 2.2 μm. The same spectral window would also be most suitable for direct infrared imaging of preparatory sketches under the paint layers. The reflectance spectra from a large sample of chemically verified pigments provide information on the spectral transparency of historic artists’ pigments/paints as well as a reference set of spectra for pigment identification. The results of the paper suggest that broadband sources at ~2 microns are highly desirable for OCT applications in art and potentially material science in general

    Beyond the Bandwagon: Curating Cultural Memory at Milner Library

    Get PDF
    Archival and manuscript materials record human experience; they document how people have lived, worked, interacted, and thought about the world. These unique or rare materials make visible the experience and impact of individuals and organizations within their respective cultural, geographical, historical, local, and educational milieu. By exploring such documents and objects, patrons can see and investigate these relationships firsthand. Primary sources form the bedrock of humanistic research, personal inquiry, and engaged teaching. With this volume, we invite you to explore the unique and rare materials housed in Milner Library’s Special Collections and Dr. Jo Ann Rayfield University Archives as well as the services that bring them to life for readers worldwide. Contributed essays from scholars and collection stewards highlight how a small sample of these rich collections facilitate teaching and learning within the Illinois State University community and beyond.https://ir.library.illinoisstate.edu/mlp/1032/thumbnail.jp

    Atmospheric Methane : Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations

    Get PDF
    Atmospheric methane's rapid growth from late 2006 is unprecedented in the observational record. Assessment of atmospheric methane data attributes a large fraction of this atmospheric growth to increased natural emissions over the tropics, which appear to be responding to changes in anthropogenic climate forcing. Isotopically lighter measurements of (Figure presented.) are consistent with the recent atmospheric methane growth being mainly driven by an increase in emissions from microbial sources, particularly wetlands. The global methane budget is currently in disequilibrium and new inputs are as yet poorly quantified. Although microbial emissions from agriculture and waste sources have increased between 2006 and 2022 by perhaps 35 Tg/yr, with wide uncertainty, approximately another 35–45 Tg/yr of the recent net growth in methane emissions may have been driven by natural biogenic processes, especially wetland feedbacks to climate change. A model comparison shows that recent changes may be comparable or greater in scale and speed than methane's growth and isotopic shift during past glacial/interglacial termination events. It remains possible that methane's current growth is within the range of Holocene variability, but it is also possible that methane's recent growth and isotopic shift may indicate a large-scale reorganization of the natural climate and biosphere is under way

    Atmospheric Methane: Comparison Between Methane's Record in 2006–2022 and During Glacial Terminations

    Get PDF
    Atmospheric methane's rapid growth from late 2006 is unprecedented in the observational record. Assessment of atmospheric methane data attributes a large fraction of this atmospheric growth to increased natural emissions over the tropics, which appear to be responding to changes in anthropogenic climate forcing. Isotopically lighter measurements of d13C-CH4 are consistent with the recent atmospheric methane growth being mainly driven by an increase in emissions from microbial sources, particularly wetlands. The global methane budget is currently in disequilibrium and new inputs are as yet poorly quantified. Although microbial emissions from agriculture and waste sources have increased between 2006 and 2022 by perhaps 35 Tg/yr, with wide uncertainty, approximately another 35–45 Tg/yr of the recent net growth in methane emissions may have been driven by natural biogenic processes, especially wetland feedbacks to climate change. A model comparison shows that recent changes may be comparable or greater in scale and speed than methane's growth and isotopic shift during past glacial/interglacial termination events. It remains possible that methane's current growth is within the range of Holocene variability, but it is also possible that methane's recent growth and isotopic shift may indicate a large-scale reorganization of the natural climate and biosphere is under way

    Exercise as an add-on treatment in individuals with schizophrenia: results from a large multicenter randomized controlled trial

    Get PDF
    Current treatment methods do not achieve recovery for most individuals with schizophrenia, and symptoms such as negative symptoms and cognitive deficits often persist. Aerobic endurance training has been suggested as a potential add-on treatment targeting both physical and mental health. We performed a large-scale multicenter, rater-blind, parallel-group randomized controlled clinical trial in individuals with stable schizophrenia. Participants underwent a professionally supervised six-month training comprising either aerobic endurance training (AET) or flexibility, strengthening, and balance training (FSBT, control group), follow-up was another six months. The primary endpoint was all-cause discontinuation (ACD); secondary endpoints included effects on psychopathology, cognition, functioning, and cardiovascular risk. In total, 180 participants were randomized. AET was not superior to FSBT in ACD and most secondary outcomes, with dropout rates of 59.55% and 57.14% in the six-month active phase, respectively. However, both groups showed significant improvements in positive, general, and total symptoms, levels of functioning and in cognitive performance. A higher training frequency additionally promoted further memory domains. Participants with higher baseline cognitive abilities were more likely to respond to the interventions. Our results support integrating exercise into schizophrenia treatment, while future studies should aim to develop personalized training recommendations to maximize exercise-induced benefits

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
    corecore