852 research outputs found

    Superconducting behavior of the solid solution, Y2Pd(1-x)Pt(x)Ge3

    Full text link
    The compound Y2PdGe3 was earlier reported by us to be one of the very few ternary superconducting compounds (T_c= 3 K) belonging to the same structure as that of MgB2. Here we report the results of electrical resistivity, magnetization and heat capacity measurements at low temperatures on the solid solution with a nominal starting composition, Y2Pd(1-x)Pt(x)Ge3, to understand the influence of gradual replacement of Pd by Pt on T_c. The superconducting properties of this solution is distinctly interesting in the sense that the Tc varies monotonically with increasing x in sharp contrast to the non-monotonic variation for other isostructural solid solutions reported recently.Comment: Physica C, in pres

    Temperature Variation of Ultra Slow Light in a Cold Gas

    Get PDF
    A model is developed to explain the temperature dependence of the group velocity as observed in the experiments of Hau et al (Nature {\bf397}, 594 (1999)). The group velocity is quite sensitive to the change in the spatial density. The inhomogeneity in the density and its temperature dependence are primarily responsible for the observed behavior.Comment: 12 pages, 4 figure

    Surface and Image-Potential States on the MgB_2(0001) Surfaces

    Get PDF
    We present a self-consistent pseudopotential calculation of surface and image-potential states on MgB2(0001)MgB_2(0001) for both BB-terminated (BtB-t) and MgMg-terminated (MgtMg-t) surfaces. We find a variety of very clear surface and subsurface states as well as resonance image-potential states n=1,2 on both surfaces. The surface layer DOS at EFE_F is increased by 55% at BtB-t and by 90% at the MgtMg-t surface compared to DOS in the corresponding bulk layers.Comment: 3 pages, 6 figure

    Measurement of single electron emission in two-phase xenon

    Get PDF
    We present the first measurements of the electroluminescence response to the emission of single electrons in a two-phase noble gas detector. Single ionization electrons generated in liquid xenon are detected in a thin gas layer during the 31-day background run of the ZEPLIN-II experiment, a two-phase xenon detector for WIMP dark matter searches. Both the pressure dependence and magnitude of the single-electron response are in agreement with previous measurements of electroluminescence yield in xenon. We discuss different photoionization processes as possible cause for the sample of single electrons studied in this work. This observation may have implications for the design and operation of future large-scale two-phase systems.Comment: 11 pages, 6 figure

    Meson screening masses from lattice QCD with two light and the strange quark

    Full text link
    We present results for screening masses of mesons built from light and strange quarks in the temperature range of approximately between 140 MeV to 800 MeV. The lattice computations were performed with 2+1 dynamical light and strange flavors of improved (p4) staggered fermions along a line of constant physics defined by a pion mass of about 220 MeV and a kaon mass of 500 MeV. The lattices had temporal extents Nt = 4, 6 and 8 and aspect ratios of Ns / Nt \geq 4. At least up to a temperature of 140 MeV the pseudo-scalar screening mass remains almost equal to the corresponding zero temperature pseudo-scalar (pole) mass. At temperatures around 3Tc (Tc being the transition temperature) the continuum extrapolated pseudo-scalar screening mass approaches very close to the free continuum result of 2 \pi T from below. On the other hand, at high temperatures the vector screening mass turns out to be larger than the free continuum value of 2 \pi T. The pseudo-scalar and the vector screening masses do not become degenerate even for a temperature as high as 4Tc. Using these mesonic spatial correlation functions we have also investigated the restoration of chiral symmetry and the effective restoration of the axial symmetry. We have found that the vector and the axial-vector screening correlators become degenerate, indicating chiral symmetry restoration, at a temperature which is consistent with the QCD transition temperature obtained in previous studies. On the other hand, the pseudo-scalar and the scalar screening correlators become degenerate only at temperatures larger than 1.3Tc, indicating that the effective restoration of the axial symmetry takes place at a temperature larger than the QCD transition temperature.Comment: Published versio

    Weak lensing, dark matter and dark energy

    Full text link
    Weak gravitational lensing is rapidly becoming one of the principal probes of dark matter and dark energy in the universe. In this brief review we outline how weak lensing helps determine the structure of dark matter halos, measure the expansion rate of the universe, and distinguish between modified gravity and dark energy explanations for the acceleration of the universe. We also discuss requirements on the control of systematic errors so that the systematics do not appreciably degrade the power of weak lensing as a cosmological probe.Comment: Invited review article for the GRG special issue on gravitational lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on three-point function and some references added. Matches the published versio

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    The growth factor of matter perturbations in an f(R) gravity

    Full text link
    The growth of matter perturbations in the f(R)f(R) model proposed by Starobinsky is studied in this paper. Three different parametric forms of the growth index are considered respectively and constraints on the model are obtained at both the 1σ1\sigma and 2σ2\sigma confidence levels, by using the current observational data for the growth factor. It is found, for all the three parametric forms of the growth index examined, that the Starobinsky model is consistent with the observations only at the 2σ2\sigma confidence level.Comment: 15 pages, 5 figure

    Metal enrichment processes

    Full text link
    There are many processes that can transport gas from the galaxies to their environment and enrich the environment in this way with metals. These metal enrichment processes have a large influence on the evolution of both the galaxies and their environment. Various processes can contribute to the gas transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy interactions and others. We review their observational evidence, corresponding simulations, their efficiencies, and their time scales as far as they are known to date. It seems that all processes can contribute to the enrichment. There is not a single process that always dominates the enrichment, because the efficiencies of the processes vary strongly with galaxy and environmental properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science Reviews, special issue "Clusters of galaxies: beyond the thermal view", Editor J.S. Kaastra, Chapter 17; work done by an international team at the International Space Science Institute (ISSI), Bern, organised by J.S. Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke

    Event-by-Event Fluctuations in Particle Multiplicities and Transverse Energy Produced in 158.A GeV Pb+Pb collisions

    Get PDF
    Event-by-event fluctuations in the multiplicities of charged particles and photons, and the total transverse energy in 158A\cdot A GeV Pb+Pb collisions are studied for a wide range of centralities. For narrow centrality bins the multiplicity and transverse energy distributions are found to be near perfect Gaussians. The effect of detector acceptance on the multiplicity fluctuations has been studied and demonstrated to follow statistical considerations. The centrality dependence of the charged particle multiplicity fluctuations in the measured data has been found to agree reasonably well with those obtained from a participant model. However for photons the multiplicity fluctuations has been found to be lower compared to those obtained from a participant model. The multiplicity and transverse energy fluctuations have also been compared to those obtained from the VENUS event generator.Comment: To appear in Physical Review C; changes : more detailed discussion on errors and few figures modifie
    corecore