32 research outputs found

    Late quaternary sea-ice and sedimentary redox conditions in the eastern Bering Sea – Implications for ventilation of the mid-depth North Pacific and an Atlantic-Pacific seesaw mechanism

    Get PDF
    On glacial-interglacial and millennial timescales, sea ice is an important player in the circulation and primary productivity of high latitude oceans, affecting regional and global biogeochemical cycling. In the modern North Pacific, brine rejection during sea-ice freezing in the Sea of Okhotsk drives the formation of North Pacific Intermediate Water (NPIW) that ventilates the North Pacific Ocean at 300 m to 1000 m water depth. Glacial intervals of the late Quaternary, however, experienced a deepening of glacial NPIW to at least 2000 m, with the strongest ventilation observed during cold stadial conditions of the last deglaciation. However, the origin of the shifts in NPIW ventilation is poorly understood. Numerical simulations suggest an atmospheric teleconnection between the North Atlantic and the North Pacific, in response to a slowdown or shutdown of the Atlantic meridional overturning circulation. This leads to a build-up of salinity in the North Pacific surface ocean, triggering deep ventilation. Alternatively, increased sea-ice formation in the North Pacific and its marginal seas may have caused strengthened overturning in response to enhanced brine rejection. Here we use a multi-proxy approach to explore sea-ice dynamics, sedimentary redox chemistry, and benthic ecology at Integrated Ocean Drilling Program Site U1343 in the eastern Bering Sea across the last 40 ka. Our results suggest that brine rejection from enhanced sea-ice formation during early Heinrich Stadial 1 locally weakened the halocline, aiding in the initiation of deep overturning. Additionally, deglacial sea-ice retreat likely contributed to increased primary productivity and expansion of mid-depth hypoxia at Site U1343 during interstadials, confirming a vital role of sea ice in the deglacial North Pacific carbon cycle

    A high-resolution record from IODP Site 323-U1440

    No full text
    Millennial-scale climate events in the North Pacific are thought to be related to changes in the circulation of North Pacific Intermediate Water, which may have formed in the Bering Sea in the past. To advance our understanding of the mechanisms that underlie millennial-scale events, Bering Sea sediment cores from the Integrated Ocean Drilling Program site U1340 were used to construct high-resolution, multiproxy climate records of the last 90,000 years. Sediment density records show millennial-scale events resembling Dansgaard-Oeschger events, several of which are laminated. Interstadials were characterized by 3–5 °C warming, increased productivity driven by upwelling, and reduced benthic oxygenation. Bering Sea intermediate water also changed over longer timescales; our records show the presence of intermediate water with lower salinity and higher oxygen content than modern beginning around 60 ka and persisting until the beginning of the deglaciation. The Bølling-Allerød was characterized by high productivity, laminated sediments, and strong denitrification signature. Our data support the idea that productivity-derived changes in oxygenation at intermediate water source regions may have contributed to the intensification of the North Pacific–wide oxygen minima during the Bølling-Allerød

    Comparative evaluation of clinical and cerebrospinal fluid biomarker characteristics in rapidly and non-rapidly progressive Alzheimer’s disease

    No full text
    Abstract Background Rapidly progressive forms of Alzheimer’s disease (rpAD) are increasingly recognized and may have a prevalence of up to 30% of patients among all patients with Alzheimer’s disease (AD). However, insights about risk factors, underlying pathophysiological processes, and clinical characteristics of rpAD remain controversial. This study aimed to gain a comprehensive picture of rpAD and new insights into the clinical manifestation to enable a better interpretation of disease courses in clinical practice as well as in future clinical studies. Methods Patients (n = 228) from a prospective observational study on AD were selected and categorized into rpAD (n = 67) and non-rpAD (n = 161) disease groups. Patients were recruited through the German Creutzfeldt-Jakob disease surveillance center and the memory outpatient clinic of the Göttingen University Medical Center, representing diverse phenotypes of the AD population. Biomarkers and clinical presentation were assessed using standardized protocols. A drop of ≥ MMSE 6 points within 12 months defined rapid progressors. Results Lower CSF Amyloid beta 1–42 concentrations (p = 0.048), lower Amyloid beta 42/40 ratio (p = 0.038), and higher Tau/Amyloid-beta 1–42 ratio, as well as pTau/Amyloid-beta 1–42 ratio (each p = 0.004) were associated with rpAD. Analyzes in a subset of the cohort (rpAD: n = 12; non-rpAD: n = 31) showed higher CSF NfL levels in rpAD (p = 0.024). Clinically, rpAD showed earlier impairment of functional abilities (p < 0.001) and higher scores on the Unified Parkinson’s Disease Rating Scale III (p < 0.001), indicating pronounced extrapyramidal motor symptoms. Furthermore, cognitive profiles (adjusted for overall cognitive performance) indicated marked deficits in semantic (p = 0.008) and phonematic (0.023) verbal fluency tests as well as word list learning (p = 0.007) in rpAD compared to non-rpAD. The distribution of APOE genotypes did not differ significantly between groups. Conclusions Our results suggest that rpAD is associated with distinct cognitive profiles, earlier occurrence of non-cognitive symptoms, extrapyramidal motoric disturbance, and lower Amyloid-beta 1–42 concentrations in the CSF. The findings may help to characterize a distinct phenotype of rpAD and estimate prognosis based on clinical characteristics and biomarker results. However, an important future goal should be a unified definition for rpAD to enable targeted study designs and better comparability of the results
    corecore