824 research outputs found

    Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector

    Full text link
    Data from the AMANDA-B10 detector taken during the austral winter of 1997 have been searched for a diffuse flux of high energy extraterrestrial muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the universe. This search yielded no excess events above those expected from the background atmospheric neutrinos, leading to upper limits on the extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x 10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV) which is the most restrictive bound placed by any neutrino detector. When specific predicted spectral forms are considered, it is found that some are excluded.Comment: Submitted to Physical Review Letter

    Very-high-energy observations of the binaries V 404 Cyg and 4U 0115+634 during giant X-ray outbursts

    Full text link
    Transient X-ray binaries produce major outbursts in which the X-ray flux can increase over the quiescent level by factors as large as 10710^7. The low-mass X-ray binary V 404 Cyg and the high-mass system 4U 0115+634 underwent such major outbursts in June and October 2015, respectively. We present here observations at energies above hundreds of GeV with the VERITAS observatory taken during some of the brightest X-ray activity ever observed from these systems. No gamma-ray emission has been detected by VERITAS in 2.5 hours of observations of the microquasar V 404 Cyg from 2015, June 20-21. The upper flux limits derived from these observations on the gamma-ray flux above 200 GeV of F <4.4×1012< 4.4\times 10^{-12} cm2^{-2} s1^{-1} correspond to a tiny fraction (about 10610^{-6}) of the Eddington luminosity of the system, in stark contrast to that seen in the X-ray band. No gamma rays have been detected during observations of 4U 0115+634 in the period of major X-ray activity in October 2015. The flux upper limit derived from our observations is F <2.1×1012< 2.1\times 10^{-12} cm2^{-2} s1^{-1} for gamma rays above 300 GeV, setting an upper limit on the ratio of gamma-ray to X-ray luminosity of less than 4%.Comment: Accepted for publication in the Astrophysical Journa

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector

    Get PDF
    On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gammas and/or neutrinos. The data revealed no significant signal. The upper limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2).Comment: 14 pages, 3 figure

    Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector

    Get PDF
    The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well-understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of livetime, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    An NLO QCD analysis of inclusive cross-section and jet-production data from the ZEUS experiment

    Full text link
    The ZEUS inclusive differential cross-section data from HERA, for charged and neutral current processes taken with e+ and e- beams, together with differential cross-section data on inclusive jet production in e+ p scattering and dijet production in \gamma p scattering, have been used in a new NLO QCD analysis to extract the parton distribution functions of the proton. The input of jet data constrains the gluon and allows an accurate extraction of \alpha_s(M_Z) at NLO; \alpha_s(M_Z) = 0.1183 \pm 0.0028(exp.) \pm 0.0008(model) An additional uncertainty from the choice of scales is estimated as \pm 0.005. This is the first extraction of \alpha_s(M_Z) from HERA data alone.Comment: 37 pages, 14 figures, to be submitted to EPJC. PDFs available at http://durpdg.dur.ac.uk/hepdata in LHAPDFv
    corecore