7 research outputs found

    Small-scale dynamo action during the formation of the first stars and galaxies. I. The ideal MHD limit

    Full text link
    We explore the amplification of magnetic seed fields during the formation of the first stars and galaxies. During gravitational collapse, turbulence is created from accretion shocks, which may act to amplify weak magnetic fields in the protostellar cloud. Numerical simulations showed that such turbulence is sub-sonic in the first star-forming minihalos, and highly supersonic in the first galaxies with virial temperatures larger than 10^4 K. We investigate the magnetic field amplification during the collapse both for Kolmogorov and Burgers-type turbulence with a semi-analytic model that incorporates the effects of gravitational compression and small-scale dynamo amplification. We find that the magnetic field may be substantially amplified before the formation of a disk. On scales of 1/10 of the Jeans length, saturation occurs after ~10^8 yr. Although the saturation behaviour of the small-scale dynamo is still somewhat uncertain, we expect a saturation field strength of the order ~10^{-7} n^{0.5} G in the first star-forming halos, with n the number density in cgs units. In the first galaxies with higher turbulent velocities, the magnetic field strength may be increased by an order of magnitude, and saturation may occur after 10^6 to 10^7 yr. In the Kolmogorov case, the magnetic field strength on the integral scale (i.e. the scale with most magnetic power) is higher due to the characteristic power-law indices, but the difference is less than a factor of 2 in the saturated phase. Our results thus indicate that the precise scaling of the turbulent velocity with length scale is of minor importance. They further imply that magnetic fields will be significantly enhanced before the formation of a protostellar disk, where they may change the fragmentation properties of the gas and the accretion rate.Comment: 11 pages, 9 figures, accepted at A&

    Reionization - A probe for the stellar population and the physics of the early universe

    Full text link
    We calculate the reionization history for different models of the stellar population and explore the effects of primordial magnetic fields, dark matter decay and dark matter annihilation on reionization. We find that stellar populations based on a Scalo-type initial mass function for Population II stars can be ruled out as sole sources for reionization, unless star formation efficiencies of more than 10% or very high photon escape fractions from the parental halo are adopted. When considering primordial magnetic fields, we find that the additional heat injection from ambipolar diffusion and decaying MHD turbulence has significant impact on the thermal evolution and the ionization history of the post-recombination universe and on structure formation. The magnetic Jeans mass changes the typical mass scale of the star forming halos, and depending on the adopted stellar model we derive upper limits to the magnetic field strength between 0.7 and 55 nG (comoving). For dark matter annihilation, we find an upper limit to the thermally averaged mass-weighted cross section of 1033cm3/s/eV10^{-33} \mathrm{cm}^3\mathrm{/s/eV}. For dark matter decay, our calculations yield a lower limit to the lifetime of dark matter particles of 3×10233\times10^{23} s. These limits are in agreement with constraints from recombination and the X-ray background and provide an independent confirmation at a much later epoch.Comment: 13 pages, 10 figures, accepted for publication at Phys.Rev.

    Dark Stars: A New Study of the FIrst Stars in the Universe

    Full text link
    We have proposed that the first phase of stellar evolution in the history of the Universe may be Dark Stars (DS), powered by dark matter heating rather than by nuclear fusion. Weakly Interacting Massive Particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a Dark Star, powered by dark matter annihilation as long as there is dark matter fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (106L\sim 10^6 L_\odot) and cool (Tsurf<10,000T_{surf} < 10,000K) during the DS phase, and grow to be very massive (500-1000 times as massive as the Sun). These results differ markedly from the standard picture in the absence of DM heating, in which the maximum mass is about 140MM_\odot and the temperatures are much hotter (Tsurf>50,000T_{surf} > 50,000K); hence DS should be observationally distinct from standard Pop III stars. Once the dark matter fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.Comment: article to be published in special issue on Dark Matter and Particle Physics in New Journal of Physic
    corecore