14 research outputs found

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Art. 270–275a, Art. 288–295

    Full text link

    Marriage age in islamic and contemporary muslim family laws. A comparative survey

    Get PDF
    Throughout the world, marriage arguably is one of the most important social and legal institutions. The socially and legally recognised bond between a man and a woman lies at the heart of most families. However, there is no globally uniform understanding of marriage. Its meaning is inseparably linked to culture, religion and social class. The purpose of this essay is limited to providing a comparative perspective on the situation in five different Arab and Islamic countries. The main focus is on the minimum age for marriage. Child marriages are a major concern of both human rights organisations and international treaties. There is a strong link between marriageable age and the overall status of women in society: the earlier a woman marries, the more the time for her education, employment and personal development is constrained. In many countries, various attempts have been made to ban marriages between minors. In Arab and Islamic countries, difficulties in this area also arise from tensions between traditional interpretations of religious sources on the one hand, and international treaty commitments on the other. The first section of this paper introduces the classical Islamic law position on marriageability. The second part provides a brief outline of the international framework with regard to the age at which marriage is permitted. The third and central part is dedicated to an analysis of legal developments in five different Islamic countries - Morocco, Egypt, Saudi Arabia, Iran and Afghanistan – as well as a consideration of the political, historical and social framework of marriage in those countries and the current legal situations which apply there. The fourth and final part of the paper recapitulates the results of this analysis and presents the conclusions drawn from it

    Disease-Induced Assemblage of the Rhizosphere Fungal Community in Successive Plantings of Wheat

    No full text
    Plant is one of the primary drivers of microbial communities in the rhizosphere. The consistent presence of the same plant species over time such as monocropping in agriculture can drive significant changes in plant-associated microbiomes. Most of the studies with monocropping have focused on bacteria, which are involved in the natural suppression of a number of soilborne diseases, including Rhizoctonia root rot and take-all. However, few studies have examined how monocropping and root rot pathogens jointly affect the structure of fungal communities in the rhizosphere. In this greenhouse study, rhizosphere fungal communities from successive wheat plantings infected with the fungal pathogen Rhizoctonia solani AG8 were characterized using MiSeq sequencing targeting the internal transcribed spacer 1 region of the ribosomal RNA gene. Sequence analyses revealed that distinct fungal groups clustered by planting cycles with or without strain AG8 inoculation but infection with strain AG8 enhanced the separation of fungal communities. Clusters of fungal communities were also observed in strain-AG8-infected and noninfected rhizospheres, whereas there was no difference in fungal communities between the rhizospheres with the least root disease and those with the worst root disease. Planting cycles significantly reduced fungal α diversity. The most abundant fungal genus was Mortierella which increased in relative abundance with planting cycles in strain-AG8-infected samples. In contrast, fungal genera that included Pseudogymnoascus, Gibberella, Fusarium, Fusicolla, Exophiala, and Waitea were reduced in relative abundance with successive plantings and strain AG8 infection. Together, this study revealed how fungal communities change with successive wheat growth under the pressure of a soilborne fungal pathogen

    An integrative approach to cisplatin chronic toxicities in mice reveals importance of organic cation-transporter-dependent protein networks for renoprotection

    No full text
    Cisplatin (CDDP) is one of the most important chemotherapeutic drugs in modern oncology. However, its use is limited by severe toxicities, which impair life quality after cancer. Here, we investigated the role of organic cation transporters (OCT) in mediating toxicities associated with chronic (twice the week for 4 weeks) low-dose (4 mg/kg body weight) CDDP treatment (resembling therapeutic protocols in patients) of wild-type (WT) mice and mice with OCT genetic deletion (OCT1/2(-/-)). Functional and molecular analysis showed that OCT1/2(-/-) mice are partially protected from CDDP-induced nephrotoxicity and peripheral neurotoxicity, whereas ototoxicity was not detectable. Surprisingly, proteomic analysis of the kidneys demonstrated that genetic deletion of OCT1/2 itself was associated with significant changes in expression of proinflammatory and profibrotic proteins which are part of an OCT-associated protein network. This signature directly regulated by OCT consisted of three classes of proteins, viz., profibrotic proteins, proinflammatory proteins, and nutrient sensing molecules. Consistent with functional protection, CDDP-induced proteome changes were more severe in WT mice than in OCT1/2(-/-) mice. Laser ablation-inductively coupled plasma-mass spectrometry analysis demonstrated that the presence of OCT was not associated with higher renal platinum concentrations. Taken together, these results redefine the role of OCT from passive membrane transporters to active modulators of cell signaling in the kidney

    Safety and tolerability of subcutaneous trastuzumab for the adjuvant treatment of human epidermal growth factor receptor 2-positive early breast cancer: SafeHer phase III study's primary analysis of 2573 patients

    No full text
    corecore