489 research outputs found

    Cell Invasion by Neisseria meningitidis Requires a Functional Interplay between the Focal Adhesion Kinase, Src and Cortactin

    Get PDF
    Entry of Neisseria meningitidis (the meningococcus) into human brain microvascular endothelial cells (HBMEC) is mediated by fibronectin or vitronectin bound to the surface protein Opc forming a bridge to the respective integrins. This interaction leads to cytoskeletal rearrangement and uptake of meningococci. In this study, we determined that the focal adhesion kinase (FAK), which directly associates with integrins, is involved in integrin-mediated internalization of N. meningitidis in HBMEC. Inhibition of FAK activity by the specific FAK inhibitor PF 573882 reduced Opc-mediated invasion of HBMEC more than 90%. Moreover, overexpression of FAK mutants that were either impaired in the kinase activity or were not capable of autophosphorylation or overexpression of the dominant-negative version of FAK (FRNK) blocked integrin-mediated internalization of N. meningitidis. Importantly, FAK-deficient fibroblasts were significantly less invaded by N. meningitidis. Furthermore, N. meningitidis induced tyrosine phosphorylation of several host proteins including the FAK/Src complex substrate cortactin. Inhibition of cortactin expression by siRNA silencing and mutation of critical amino acid residues within cortactin, that encompass Arp2/3 association and dynamin binding, significantly reduced meningococcal invasion into eukaryotic cells suggesting that both domains are critical for efficient uptake of N. meningitidis into eukaryotic cells. Together, these results indicate that N. meningitidis exploits the integrin signal pathway for its entry and that FAK mediates the transfer of signals from activated integrins to the cytoskeleton. A cooperative interplay between FAK, Src and cortactin then enables endocytosis of N. meningitidis into host cells

    FAK/src-Family Dependent Activation of the Ste20-Like Kinase SLK Is Required for Microtubule-Dependent Focal Adhesion Turnover and Cell Migration

    Get PDF
    Cell migration involves a multitude of signals that converge on cytoskeletal reorganization, essential for development, immune responses and tissue repair. Using knockdown and dominant negative approaches, we show that the microtubule-associated Ste20-like kinase SLK is required for focal adhesion turnover and cell migration downstream of the FAK/c-src complex. Our results show that SLK co-localizes with paxillin, Rac1 and the microtubules at the leading edge of migrating cells and is activated by scratch wounding. SLK activation is dependent on FAK/c-src/MAPK signaling, whereas SLK recruitment to the leading edge is src-dependent but FAK independent. Our results show that SLK represents a novel focal adhesion disassembly signal

    Activity Patterns during Food Provisioning Are Affected by Artificial Light in Free Living Great Tits (Parus major)

    Get PDF
    Artificial light may have severe ecological consequences but there is limited experimental work to assess these consequences. We carried out an experimental study on a wild population of great tits (Parus major) to assess the impact of light pollution on daily activity patterns during the chick provisioning period. Pairs that were provided with a small light outside their nest box did not alter the onset, cessation or duration of their working day. There was however a clear effect of artificial light on the feeding rate in the second half of the nestling period: when provided with artificial light females increased their feeding rate when the nestlings were between 9 and 16 days old. Artificial light is hypothesised to have affected the perceived photoperiod of either the parents or the offspring which in turn led to increased parental care. This may have negative fitness consequences for the parents, and light pollution may thus create an ecological trap for breeding birds

    Introduced Mammalian Predators Induce Behavioural Changes in Parental Care in an Endemic New Zealand Bird

    Get PDF
    The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura). We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp.) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible

    Optimal timing for managed relocation of species faced with climate change

    Get PDF
    Managed relocation is a controversial climate-adaptation strategy to combat negative climate change impacts on biodiversity. While the scientific community debates the merits of managed relocation(1-12), species are already being moved to new areas predicted to be more suitable under climate change(13,14). To inform these moves, we construct a quantitative decision framework to evaluate the timing of relocation in the face of climate change. We find that the optimal timing depends on many factors, including the size of the population, the demographic costs of translocation and the expected carrying capacities over time in the source and destination habitats. In some settings, such as when a small population would benefit from time to grow before risking translocation losses, haste is ill advised. We also find that active adaptive management(15,16) is valuable when the effect of climate change on source habitat is uncertain, and leads to delayed movement

    Prediction of phosphotyrosine signaling networks using a scoring matrix-assisted ligand identification approach

    Get PDF
    Systematic identification of binding partners for modular domains such as Src homology 2 (SH2) is important for understanding the biological function of the corresponding SH2 proteins. We have developed a worldwide web-accessible computer program dubbed SMALI for scoring matrix-assisted ligand identification for SH2 domains and other signaling modules. The current version of SMALI harbors 76 unique scoring matrices for SH2 domains derived from screening oriented peptide array libraries. These scoring matrices are used to search a protein database for short peptides preferred by an SH2 domain. An experimentally determined cut-off value is used to normalize an SMALI score, therefore allowing for direct comparison in peptide-binding potential for different SH2 domains. SMALI employs distinct scoring matrices from Scansite, a popular motif-scanning program. Moreover, SMALI contains built-in filters for phosphoproteins, Gene Ontology (GO) correlation and colocalization of subject and query proteins. Compared to Scansite, SMALI exhibited improved accuracy in identifying binding peptides for SH2 domains. Applying SMALI to a group of SH2 domains identified hundreds of interactions that overlap significantly with known networks mediated by the corresponding SH2 proteins, suggesting SMALI is a useful tool for facile identification of signaling networks mediated by modular domains that recognize short linear peptide motifs

    Nothing a Hot Bath Won't Cure: Infection Rates of Amphibian Chytrid Fungus Correlate Negatively with Water Temperature under Natural Field Settings

    Get PDF
    Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10–50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75–100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications

    Lethal trap created by adaptive evolutionary response to an exotic resource

    Get PDF
    International audienceGlobal transport of organisms by humans provides novel resources to wild species, which often respond maladaptively. Native herbivorous insects have been killed feeding on toxic exotic plants, which acted as ‘ecological traps’1,2,3,4. We document a novel ‘eco-evolutionary trap’ stemming from the opposite effect; that is, high fitness on an exotic resource despite lack of adaptation to it. Plantago lanceolata was introduced to western North America by cattle-ranching. Feeding on this exotic plant released a large, isolated population of the native butterfly Euphydryas editha from a longstanding trade-off between maternal fecundity and offspring mortality. Because of this release—and despite a reduced insect developmental rate when feeding on this exotic—Plantago immediately supported higher larval survival than did the insects’ traditional host, Collinsia parviflora5. Previous work from the 1980s documented an evolving preference for Plantago by ovipositing adults6. We predicted that if this trend continued the insects could endanger themselves, because the availability of Plantago to butterflies is controlled by humans, who change land management practices faster than butterflies evolve6. Here we report the fulfilment of this prediction. The butterflies abandoned Collinsia and evolved total dependence on Plantago. The trap was set. In 2005, humans withdrew their cattle, springing the trap. Grasses grew around the Plantago, cooling the thermophilic insects, which then went extinct. This local extinction could have been prevented if the population had retained partial use of Collinsia, which occupied drier microhabitats unaffected by cattle removal. The flush of grasses abated quickly, rendering the meadow once again suitable for Euphydryas feeding on either host, but no butterflies were observed from 2008 to 2012. In 2013–2014, the site was naturally recolonized by Euphydryas feeding exclusively on Collinsia, returning the system to its starting point and setting the stage for a repeat of the anthropogenic evolutionary cycle

    Kihi-to, a herbal traditional medicine, improves Abeta(25–35)-induced memory impairment and losses of neurites and synapses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously hypothesized that achievement of recovery of brain function after the injury requires the reconstruction of neuronal networks, including neurite regeneration and synapse reformation. Kihi-to is composed of twelve crude drugs, some of which have already been shown to possess neurite extension properties in our previous studies. The effect of Kihi-to on memory deficit has not been examined. Thus, the goal of the present study is to determine the <it>in vivo </it>and <it>in vitro </it>effects of Kihi-to on memory, neurite growth and synapse reconstruction.</p> <p>Methods</p> <p>Effects of Kihi-to, a traditional Japanese-Chinese traditional medicine, on memory deficits and losses of neurites and synapses were examined using Alzheimer's disease model mice. Improvements of Aβ(25–35)-induced neuritic atrophy by Kihi-to and the mechanism were investigated in cultured cortical neurons.</p> <p>Results</p> <p>Administration of Kihi-to for consecutive 3 days resulted in marked improvements of Aβ(25–35)-induced impairments in memory acquisition, memory retention, and object recognition memory in mice. Immunohistochemical comparisons suggested that Kihi-to attenuated neuritic, synaptic and myelin losses in the cerebral cortex, hippocampus and striatum. Kihi-to also attenuated the calpain increase in the cerebral cortex and hippocampus. When Kihi-to was added to cells 4 days after Aβ(25–35) treatment, axonal and dendritic outgrowths in cultured cortical neurons were restored as demonstrated by extended lengths of phosphorylated neurofilament-H (P-NF-H) and microtubule-associated protein (MAP)2-positive neurites. Aβ(25–35)-induced cell death in cortical culture was also markedly inhibited by Kihi-to. Since NF-H, MAP2 and myelin basic protein (MBP) are substrates of calpain, and calpain is known to be involved in Aβ-induced axonal atrophy, expression levels of calpain and calpastatin were measured. Treatment with Kihi-to inhibited the Aβ(25–35)-evoked increase in the calpain level and decrease in the calpastatin level. In addition, Kihi-to inhibited Aβ(25–35)-induced calcium entry.</p> <p>Conclusion</p> <p>In conclusion Kihi-to clearly improved the memory impairment and losses of neurites and synapses.</p
    corecore