56 research outputs found
Recommended from our members
Climate impact research: Beyond patchwork
Despite significant progress in climate impact research, the narratives that science can presently piece together of a 2, 3, 4, or 5 °C warmer world remain fragmentary. Here we briefly review past undertakings to characterise comprehensively and quantify climate impacts based on multi-model approaches. We then report on the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a community-driven effort to compare impact models across sectors and scales systematically, and to quantify the uncertainties along the chain from greenhouse gas emissions and climate input data to the modelling of climate impacts themselves. We show how ISI-MIP and similar efforts can substantially advance the science relevant to impacts, adaptation and vulnerability, and we outline the steps that need to be taken in order to make the most of the available modelling tools. We discuss pertinent limitations of these methods and how they could be tackled. We argue that it is time to consolidate the current patchwork of impact knowledge through integrated cross-sectoral assessments, and that the climate impact community is now in a favourable position to do so
Fractal Spin Glass Properties of Low Energy Configurations in the Frenkel-Kontorova chain
We study numerically and analytically the classical one-dimensional
Frenkel-Kontorova chain in the regime of pinned phase characterized by phonon
gap. Our results show the existence of exponentially many static equilibrium
configurations which are exponentially close to the energy of the ground state.
The energies of these configurations form a fractal quasi-degenerate band
structure which is described on the basis of elementary excitations. Contrary
to the ground state, the configurations inside these bands are disordered.Comment: revtex, 9 pages, 9 figure
Bloch Electrons in a Magnetic Field - Why Does Chaos Send Electrons the Hard Way?
We find that a 2D periodic potential with different modulation amplitudes in
x- and y-direction and a perpendicular magnetic field may lead to a transition
to electron transport along the direction of stronger modulation and to
localization in the direction of weaker modulation. In the experimentally
accessible regime we relate this new quantum transport phenomenon to avoided
band crossing due to classical chaos.Comment: 4 pages, 3 figures, minor modifications, PRL to appea
Recommended from our members
Climate impact research: Beyond patchwork
Despite significant progress in climate impact research, the narratives that science can presently piece together of a 2, 3, 4, or 5 degrees C warmer world remain fragmentary. Here we briefly review past undertakings to characterise comprehensively and quantify climate impacts based on multi-model approaches. We then report on the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), a community-driven effort to compare impact models across sectors and scales systematically, and to quantify the uncertainties along the chain from greenhouse gas emissions and climate input data to the modelling of climate impacts themselves. We show how ISI-MIP and similar efforts can substantially advance the science relevant to impacts, adaptation and vulnerability, and we outline the steps that need to be taken in order to make the most of the available modelling tools. We discuss pertinent limitations of these methods and how they could be tackled. We argue that it is time to consolidate the current patchwork of impact knowledge through integrated cross-sectoral assessments, and that the climate impact community is now in a favourable position to do so
One-dimensional fermions with incommensuration
We study the spectrum of fermions hopping on a chain with a weak
incommensuration close to dimerization; both q, the deviation of the wave
number from pi, and delta, the strength of the incommensuration, are small. For
free fermions, we use a continuum Dirac theory to show that there are an
infinite number of bands which meet at zero energy as q approaches zero. In the
limit that the ratio q/ \delta --> 0, the number of states lying inside the q=0
gap is nonzero and equal to 2 \delta /\pi^2. Thus the limit q --> 0 differs
from q=0; this can be seen clearly in the behavior of the specific heat at low
temperature. For interacting fermions or the XXZ spin-1/2 chain close to
dimerization, we use bosonization to argue that similar results hold; as q -->
0, we find a nontrivial density of states near zero energy. However, the limit
q --> 0 and q=0 give the same results near commensurate wave numbers which are
different from pi. We apply our results to the Azbel-Hofstadter problem of
electrons hopping on a two-dimensional lattice in the presence of a magnetic
field. Finally, we discuss the complete energy spectrum of noninteracting
fermions with incommensurate hopping by going up to higher orders in delta.Comment: Revtex, 23 pages including 7 epsf figures; this is a greatly expanded
version of cond-mat/981133
The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: I. Basic Results
The problem of finding the exact energies and configurations for the
Frenkel-Kontorova model consisting of particles in one dimension connected to
their nearest-neighbors by springs and placed in a periodic potential
consisting of segments from parabolas of identical (positive) curvature but
arbitrary height and spacing, is reduced to that of minimizing a certain convex
function defined on a finite simplex.Comment: 12 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 6
Postscript figures, accepted by Phys. Rev.
The Copenhagen Diagnosis: Updating the World on the Latest Climate Science
The Copenhagen Diagnosis is a summary of the global warming peer reviewed science since 2007. Produced by a team of 26 scientists led by the University of New South Wales Climate Research Centre, the Diagnosis convincingly proves that the effects of global warming have gotten worse in the last three years. It is a timely update to the UN’s Intercontinental Panel on Climate Change 2007 Fourth Assessment document (IPCC AR4).
The report places the blame for the century long temperature increase on human factors and says the turning point ";must come soon";. If we are to limit warming to 2 degrees above pre-industrial values, global emissions must peak by 2020 at the latest and then decline rapidly. The scientists warned that waiting for higher levels of scientific certainty could mean that some tipping points will be crossed before they are recognized. By 2050 we will effectively need to be in a post-carbon economy if we are to avoid unlivable temperatures
Landscape science: a Russian geographical tradition
The Russian geographical tradition of landscape science (landshaftovedenie) is analyzed with particular reference to its initiator, Lev Semenovich Berg (1876-1950). The differences between prevailing Russian and Western concepts of landscape in geography are discussed, and their common origins in German geographical thought in the late nineteenth and early twentieth centuries are delineated. It is argued that the principal differences are accounted for by a number of factors, of which Russia's own distinctive tradition in environmental science deriving from the work of V. V. Dokuchaev (1846-1903), the activities of certain key individuals (such as Berg and C. O. Sauer), and the very different social and political circumstances in different parts of the world appear to be the most significant. At the same time it is noted that neither in Russia nor in the West have geographers succeeded in specifying an agreed and unproblematic understanding of landscape, or more broadly in promoting a common geographical conception of human-environment relationships. In light of such uncertainties, the latter part of the article argues for closer international links between the variant landscape traditions in geography as an important contribution to the quest for sustainability
Potential climatic transitions with profound impact on Europe
We discuss potential transitions of six climatic subsystems with large-scale impact on Europe, sometimes denoted as tipping elements. These are the ice sheets on Greenland and West Antarctica, the Atlantic thermohaline circulation, Arctic sea ice, Alpine glaciers and northern hemisphere stratospheric ozone. Each system is represented by co-authors actively publishing in the corresponding field. For each subsystem we summarize the mechanism of a potential transition in a warmer climate along with its impact on Europe and assess the likelihood for such a transition based on published scientific literature. As a summary, the ‘tipping’ potential for each system is provided as a function of global mean temperature increase which required some subjective interpretation of scientific facts by the authors and should be considered as a snapshot of our current understanding. <br/
A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties
Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making.
Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making
- …