92 research outputs found

    Методические подходы к определению рационального состава минеральных удобрений

    Get PDF
    Various methods and approaches to determination of the rational composition of mineral fertilizers are considered. The necessity of use of the ecological component for calculation the optimal set of mineral fertlizers is being grounded. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/1314

    Environmental change impacts on the C- and N-cycle of European forests: a model comparison study [Discussion paper]

    Get PDF
    Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon source was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth

    European anthropogenic AFOLU emissions and their uncertainties: a review and benchmark data

    Get PDF
    Emission of greenhouse gases (GHG) and removals from land, including both anthropogenic and natural fluxes, require reliable quantification, along with estimates of their inherent uncertainties, in order to support credible mitigation action under the Paris Agreement. This study provides a state-of-the-art scientific overview of bottom-up anthropogenic emissions data from agriculture, forestry and other land use (AFOLU) in Europe. The data integrates recent AFOLU emission inventories with ecosystem data and land carbon models, covering the European Union (EU28) and summarizes GHG emissions and removals over the period 1990–2016, of relevance for UNFCCC. This compilation of bottom-up estimates of the AFOLU GHG emissions of European national greenhouse gas inventories (NGHGI) with those of land carbon models and observation-based estimates of large-scale GHG fluxes, aims at improving the overall estimates of the GHG balance in Europe with respect to land GHG emissions and removals. Particular effort is devoted to the estimation of uncertainty, its propagation and role in the comparison of different estimates. While NGHGI data for EU28 provides consistent quantification of uncertainty following the established IPCC guidelines, uncertainty in the estimates produced with other methods will need to account for both within model uncertainty and the spread from different model results. At EU28 level, the largest inconsistencies between estimates are mainly due to different sources of data related to human activity which result in emissions or removals taking place during a given period of time (IPCC 2006) referred here as activity data (AD) and methodologies (Tiers) used for calculating emissions/removals from AFOLU sectors. The referenced datasets related to figures are visualised at https://doi.org/10.5281/zenodo.3460311, Petrescu et al., 2019

    Past decade above-ground biomass change comparisons from four multi-temporal global maps

    Get PDF
    Above-ground biomass (AGB) is considered an essential climate variable that underpins our knowledge and information about the role of forests in mitigating climate change. The availability of satellite-based AGB and AGB change (Delta AGB) products has increased in recent years. Here we assessed the past decade net Delta AGB derived from four recent global multi-date AGB maps: ESA-CCI maps, WRI-Flux model, JPL time series, and SMOS-LVOD time series. Our assessments explore and use different reference data sources with biomass re-measurements within the past decade. The reference data comprise National Forest Inventory (NFI) plot data, local Delta AGB maps from airborne LiDAR, and selected Forest Resource Assessment country data from countries with well-developed monitoring capacities. Map to reference data comparisons were performed at levels ranging from 100 m to 25 km spatial scale. The comparisons revealed that LiDAR data compared most reasonably with the maps, while the comparisons using NFI only showed some agreements at aggregation levels <10 km. Regardless of the aggregation level, AGB losses and gains according to the map comparisons were consistently smaller than the reference data. Map-map comparisons at 25 km highlighted that the maps consistently captured AGB losses in known deforestation hotspots. The comparisons also identified several carbon sink regions consistently detected by all maps. However, disagreement between maps is still large in key forest regions such as the Amazon basin. The overall AAGB map cross-correlation between maps varied in the range 0.11-0.29 (r). Reported AAGB magnitudes were largest in the high-resolution datasets including the CCI map differencing (stock change) and Flux model (gain-loss) methods, while they were smallest according to the coarser-resolution LVOD and JPL time series products, especially for AGB gains. Our results suggest that AAGB assessed from current maps can be biased and any use of the estimates should take that into account. Currently, AAGB reference data are sparse especially in the tropics but that deficit can be alleviated by upcoming LiDAR data networks in the context of Supersites and GEO-Trees

    A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps

    Get PDF
    Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement

    The consolidated European synthesis of CO2emissions and removals for the European Union and United Kingdom : 1990-2018

    Get PDF
    Acknowledgements FAOSTAT statistics are produced and disseminated with the support of its member countries to the FAO regular budget. Philippe Ciais acknowledges the support of the European Research Council Synergy project SyG-2013-610028 IMBALANCE-P and from the ANR CLAND Convergence Institute. We acknowledge the work of the entire EDGAR group (Marilena Muntean, Diego Guizzardi, Edwin Schaaf and Jos Olivier). We acknowledge Stephen Sitch and the authors of the DGVMs TRENDY v7 ensemble models for providing us with the data. Financial support This research has been supported by the H2020 European Research Council (grant no. 776810).Peer reviewedPublisher PD

    A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps

    Get PDF
    International audienceOver the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite missions dedicated to measuring AGB. Objective and consistent methods to estimate the accuracy and uncertainty of AGB maps are therefore urgently needed. This paper develops and demonstrates a framework aimed at achieving this. The framework provides a means to compare AGB maps with AGB estimates from a global collection of National Forest Inventories and research plots that accounts for the uncertainty of plot AGB errors. This uncertainty depends strongly on plot size, and is dominated by the combined errors from tree measurements and allometric models (inter-quartile range of their standard deviation (SD) = 30–151 Mg ha−1). Estimates of sampling errors are also important, especially in the most common case where plots are smaller than map pixels (SD = 16–44 Mg ha−1). Plot uncertainty estimates are used to calculate the minimum-variance linear unbiased estimates of the mean forest AGB when averaged to 0.1∘. These are used to assess four AGB maps: Baccini (2000), GEOCARBON (2008), GlobBiomass (2010) and CCI Biomass (2017). Map bias, estimated using the differences between the plot and 0.1∘ map averages, is modelled using random forest regression driven by variables shown to affect the map estimates. The bias model is particularly sensitive to the map estimate of AGB and tree cover, and exhibits strong regional biases. Variograms indicate that AGB map errors have map-specific spatial correlation up to a range of 50–104 km, which increases the variance of spatially aggregated AGB map estimates compared to when pixel errors are independent. After bias adjustment, total pantropical AGB and its associated SD are derived for the four map epochs. This total becomes closer to the value estimated by the Forest Resources Assessment after every epoch and shows a similar decrease. The framework is applicable to both local and global-scale analysis, and is available at https://github.com/arnanaraza/PlotToMap. Our study therefore constitutes a major step towards improved AGB map validation and improvement
    corecore