150 research outputs found

    Effects of Task Experience and Layout on Learning from Text and Pictures with or without Unnecessary Picture Descriptions

    Get PDF
    The presentation of extraneous (i.e., irrelevant or unnecessary) information may hamper learning with multimedia. The present study examined whether people can learn to ignore unnecessary information with increasing experience with the task and whether this depends on the layout of that information. In two experiments, participants learned about the process of mitosis from a multimedia slideshow, with each slide presenting a combination of expository text and a picture on one of the stages in the process. Slides either contained no unnecessary text (control condition) or unnecessary text (i.e., merely describing the picture) either integrated in the picture (integrated condition) or presented underneath the picture (separated condition). Knowledge about the studied mitosis phase was tested immediately after each slide using a cloze test. Across Experiments 1 and 2, we did not find a reliable negative effect of the unnecessary text on cloze test performance. As a result, the question of whether task experience would reduce or eliminate that negative effect could not be answered. The eye movement data did confirm, however, that participants attended less to the unnecessary information with increasing task experience, suggesting that students can adapt their study strategy and learn to ignore unnecessary information

    Increased migraine-free intervals with multifocal repetitive transcranial magnetic stimulation

    Get PDF
    Introduction Episodic migraine is a debilitating condition associated with vast impairments of health, daily living, and life quality. Several prophylactic treatments exist, having a moderate ratio of action related to side effects and therapy costs. Repetitive transcranial magnetic stimulation (rTMS) is an evidence based therapy in several neuropsychiatric conditions, showing robust efficacy in alleviating specific symptoms. However, its efficacy in migraine disorders is unequivocal and might be tightly linked to the applied rTMS protocol. We hypothesized that multifocal rTMS paradigm could improve clinical outcomes in patients with episodic migraine by reducing the number of migraine days, frequency and intensity of migraine attacks, and improve the quality of life. Methods We conducted an experimental, double-blind, randomized controlled study by applying a multifocal rTMS paradigm. Patients with episodic migraine with or without aura were enrolled in two centers from August 2018, to December 2019, and randomized to receive either real (n = 37) or sham (sham coil stimulation, n = 28) multifocal rTMS for six sessions over two weeks. Patients, physicians, and raters were blinded to the applied protocol. The experimental multifocal rTMS protocol included two components; first, swipe stimulation of 13 trains of 140 pulses/train, 67 Hz, 60% of RMT, and 2s intertrain interval and second, spot burst stimulation of 33 trains of 15 pulses/train, 67 Hz, 85% of RMT, and 8s intertrain interval. Reduction >50% from the baseline in migraine days (as primary outcome) and frequency and intensity of migraine attacks (as key secondary outcomes) over a 12-week period were assessed. To balance the baseline variables between the treatment arms, we applied the propensity score matching through the logistic regression. Results Among 65 randomized patients, sixty (age 39.7 ± 11.6; 52 females; real rTMS n = 33 and sham rTMS n = 27) completed the trial and five patients dropped out. Over 12 weeks, the responder's rate in the number of migraine days was significantly higher in the real rTMS compared to the sham group (42% vs. 26%, p < 0.05). The mean migraine days per month decreased from 7.6 to 4.3 days in the real rTMS group and from 6.2 to 4.3 days in the sham rTMS group, resulting in a difference with real vs. sham rTMS of −3.2 days (p < 0.05). Similarly, over the 12-week period, the responder's rate in the reduction of migraine attacks frequency was higher in the real rTMS compared to the sham group (42% vs 33%, p < 0.05). No serious adverse events were observed. Conclusion Our pilot study shows compelling evidence in a double placebo-controlled trial that multifocal rTMS is an effective and well-tolerated preventive treatment in patients with episodic migraine

    Fire in Australian savannas: From leaf to landscape

    Get PDF
    © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management

    Learning from multimedia and hypermedia

    Get PDF
    Computer-based multimedia and hypermedia resources (e.g., the world wide web) have become one of the primary sources of academic information for a majority of pupils and students. In line with this expansion in the field of education, the scientific study of learning from multimedia and hypermedia has become a very active field of research. In this chapter we provide a short overview with regard to research on learning with multimedia and hypermedia. In two review sections, we describe the educational benefits of multiple representations and of learner control, as these are the two defining characteristics of hypermedia. In a third review section we describe recent scientific trends in the field of multimedia/hypermedia learning. In all three review sections we will point to relevant European work on multimedia/hypermedia carried out within the last 5 years, and often carried out within the Kaleidoscope Network of Excellence. According to the interdisciplinary nature of the field this work might come not only from psychology, but also from technology or pedagogy. Comparing the different research activities on multimedia and hypermedia that have dominated the international scientific discourse in the last decade reveals some important differences. Most important, a gap seems to exist between researchers mainly interested in a “serious” educational use of multimedia/ hypermedia and researchers mainly interested in “serious” experimental research on learning with multimedia/hypermedia. Recent discussions about the pros and cons of “design-based research” or “use-inspired basic research” can be seen as a direct consequence of an increasing awareness of the tensions within these two different cultures of research on education

    Critical evaluation of molecular tumour board outcomes following 2 years of clinical practice in a Comprehensive Cancer Centre

    Get PDF
    Recently, molecular tumour boards (MTBs) have been integrated into the clinical routine. Since their benefit remains debated, we assessed MTB outcomes in the Comprehensive Cancer Center Ostbayern (CCCO) from 2019 to 2021. Methods and results In total, 251 patients were included. Targeted sequencing was performed with PCR MSI-evaluation and immunohistochemistry for PD-L1, Her2, and mismatch repair enzymes. 125 treatment recommendations were given (49.8%). High-recommendation rates were achieved for intrahepatic cholangiocarcinoma (20/30, 66.7%) and gastric adenocarcinoma (10/16, 62.5%) as opposed to colorectal cancer (9/36, 25.0%) and pancreatic cancer (3/18, 16.7%). MTB therapies were administered in 47 (18.7%) patients, while 53 (21.1%) received alternative treatment regimens. Thus 37.6% of recommended MTB therapies were implemented (47/125 recommendations). The clinical benefit rate (complete + partial + mixed response + stable disease) was 50.0% for MTB and 63.8% for alternative treatments. PFS2/1 ratios were 34.6% and 16.1%, respectively. Significantly improved PFS could be achieved for m1A-tier-evidence-based MTB therapies (median 6.30 months) compared to alternative treatments (median 2.83 months; P = 0.0278). Conclusion The CCCO MTB yielded a considerable recommendation rate, particularly in cholangiocarcinoma patients. The discrepancy between the low-recommendation rates in colorectal and pancreatic cancer suggests the necessity of a weighted prioritisation of entities. High-tier recommendations should be implemented predominantly

    The Evolution of Cognitive Load Theory and the Measurement of Its Intrinsic, Extraneous and Germane Loads: A Review

    Get PDF
    Cognitive Load Theory has been conceived for supporting instructional design through the use of the construct of cognitive load. This is believed to be built upon three types of load: intrinsic, extraneous and germane. Although Cognitive Load Theory and its assumptions are clear and well-known, its three types of load have been going through a continuous investigation and re-definition. Additionally, it is still not clear whether these are independent and can be added to each other towards an overall measure of load. The purpose of this research is to inform the reader about the theoretical evolution of Cognitive Load Theory as well as the measurement techniques and measures emerged for its cognitive load types. It also synthesises the main critiques of scholars and the scientific value of the theory from a rationalist and structuralist perspective

    Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate

    Get PDF
    The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species

    Mapping local and global variability in plant trait distributions

    Get PDF
    Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ∼50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means
    corecore