29 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Quantitative 18F-AV1451 Brain Tau PET Imaging in Cognitively Normal Older Adults, Mild Cognitive Impairment, and Alzheimer's Disease Patients

    Get PDF
    Recent developments of tau Positron Emission Tomography (PET) allows assessment of regional neurofibrillary tangles (NFTs) deposition in human brain. Among the tau PET molecular probes, 18F-AV1451 is characterized by high selectivity for pathologic tau aggregates over amyloid plaques, limited non-specific binding in white and gray matter, and confined off-target binding. The objectives of the study are (1) to quantitatively characterize regional brain tau deposition measured by 18F-AV1451 PET in cognitively normal older adults (CN), mild cognitive impairment (MCI), and AD participants; (2) to evaluate the correlations between cerebrospinal fluid (CSF) biomarkers or Mini-Mental State Examination (MMSE) and 18F-AV1451 PET standardized uptake value ratio (SUVR); and (3) to evaluate the partial volume effects on 18F-AV1451 brain uptake.Methods: The study included total 115 participants (CN = 49, MCI = 58, and AD = 8) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Preprocessed 18F-AV1451 PET images, structural MRIs, and demographic and clinical assessments were downloaded from the ADNI database. A reblurred Van Cittertiteration method was used for voxelwise partial volume correction (PVC) on PET images. Structural MRIs were used for PET spatial normalization and region of interest (ROI) definition in standard space. The parametric images of 18F-AV1451 SUVR relative to cerebellum were calculated. The ROI SUVR measurements from PVC and non-PVC SUVR images were compared. The correlation between ROI 18F-AV1451 SUVR and the measurements of MMSE, CSF total tau (t-tau), and phosphorylated tau (p-tau) were also assessed.Results:18F-AV1451 prominently specific binding was found in the amygdala, entorhinal cortex, parahippocampus, fusiform, posterior cingulate, temporal, parietal, and frontal brain regions. Most regional SUVRs showed significantly higher uptake of 18F-AV1451 in AD than MCI and CN participants. SUVRs of small regions like amygdala, entorhinal cortex and parahippocampus were statistically improved by PVC in all groups (p < 0.01). Although there was an increasing tendency of 18F-AV-1451 SUVRs in MCI group compared with CN group, no significant difference of 18F-AV1451 deposition was found between CN and MCI brains with or without PVC (p > 0.05). Declined MMSE score was observed with increasing 18F-AV1451 binding in amygdala, entorhinal cortex, parahippocampus, and fusiform. CSF p-tau was positively correlated with 18F-AV1451 deposition. PVC improved the results of 18F-AV-1451 tau deposition and correlation studies in small brain regions.Conclusion: The typical deposition of 18F-AV1451 tau PET imaging in AD brain was found in amygdala, entorhinal cortex, fusiform and parahippocampus, and these regions were strongly associated with cognitive impairment and CSF biomarkers. Although more deposition was observed in MCI group, the 18F-AV-1451 PET imaging could not differentiate the MCI patients from CN population. More tau deposition related to decreased MMSE score and increased level of CSF p-tau, especially in ROIs of amygdala, entorhinal cortex and parahippocampus. PVC did improve the results of tau deposition and correlation studies in small brain regions and suggest to be routinely used in 18F-AV1451 tau PET quantification

    Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images

    Get PDF
    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI–cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI–NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI–NC comparison. The best performances obtained by the SVM classifier using the essential features were 5–40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease

    Allelic mRNA Expression of Sortilin-1 (SORL1) mRNA in Alzheimer\u27s Autopsy Brain Tissues

    No full text
    Polymorphisms in the gene encoding SORL1, involved in cellular trafficking of APP, have been implicated in late-onset Alzheimer\u27s disease, by a mechanism thought to affect mRNA expression. To search for regulatory polymorphisms, we have measured allele-specific mRNA expression of SORL1 in human autopsy tissues from the prefrontal cortex of 26 Alzheimer\u27s patients, and 51 controls, using two synonymous marker SNPs (rs3824968 in exon 34 (11 heterozygous AD subjects and 16 controls), and rs12364988 in exon 6 (8 heterozygous AD subjects)). Significant allelic expression imbalance (AEI), indicative of the presence of cis-acting regulatory factors, was detected in a single control subject, while allelic ratios were near unity for all other subjects. We genotyped 7 SNPs in two haplotype blocks that had previously been implicated in Alzheimer\u27s disease. Since each of these SNPs was heterozygous in several subjects lacking AEI, this study fails to support a regulatory role for SORL1 polymorphisms in mRNA expression

    Digitally translated Self-Administered Gerocognitive Examination (eSAGE): relationship with its validated paper version, neuropsychological evaluations, and clinical assessments

    No full text
    Abstract Background The original paper Self-Administered Gerocognitive Examination (SAGE) is a valid and reliable cognitive assessment tool used to identify individuals with mild cognitive impairment (MCI) or early dementia. We evaluated identical test questions in a digital format (eSAGE) made for tablet use with the goals of calibrating it against SAGE and establishing its association with other neuropsychological tests and clinical assessments of cognitive impairment. Methods Subjects aged 50 and over who had taken SAGE were recruited from community and clinic settings. Subjects were randomly selected to participate in a clinical evaluation including neuropsychological evaluations. SAGE and eSAGE were administered using a crossover design. Subjects were identified as dementia, MCI, or normal based on standard clinical criteria. Associations were investigated using Spearman correlations, linear regression, and sensitivity and specificity measures. Results Of the 426 subjects screened, 66 completed the evaluation. eSAGE score correlation to a battery of neuropsychological tests was 0.73 (p < 0.0001) with no significant difference between the paper and digital format. Spearman correlation of SAGE versus eSAGE was 0.88 (p < 0.0001), and they are related by the formula: eSAGE score = –1.05 + 0.99 × SAGE score. Since the slope is very close to 1 (p = 0.86) there is strong evidence that the scaling is identical between eSAGE and SAGE, with no scale bias. Overall, eSAGE scores are lower by an average of 1.21 and the decrease is statistically significant (p < 0.0001). For those subjects familiar with smartphones or tablets (one measure of digital proficiency), eSAGE scores are lower by an average of 0.83 points (p = 0.029). With a score 16 and higher being classified as normal, eSAGE had 90% specificity and 71% sensitivity in detecting those with cognitive impairment from normal subjects. Conclusions Tablet-based eSAGE shows a strong association with the validated paper SAGE and a neuropsychological battery. It shows no scale bias compared to SAGE. Both have the advantage of self-administration, brevity, four interchangeable forms, and high sensitivity and specificity in detecting cognitive impairment from normal subjects. Their potential widespread availability will be a major factor in overcoming the many obstacles in identifying early cognitive changes. Trial registration ClinicalTrials.gov, NCT02544074 . Registered on 18 March 2015

    Community Cognitive Screening Using the Self-Administered

    No full text
    study investigated the functionality of the Self

    Explainable machine learning aggregates polygenic risk scores and electronic health records for Alzheimer’s disease prediction

    No full text
    Abstract Alzheimer’s disease (AD) is the most common late-onset neurodegenerative disorder. Identifying individuals at increased risk of developing AD is important for early intervention. Using data from the Alzheimer Disease Genetics Consortium, we constructed polygenic risk scores (PRSs) for AD and age-at-onset (AAO) of AD for the UK Biobank participants. We then built machine learning (ML) models for predicting development of AD, and explored feature importance among PRSs, conventional risk factors, and ICD-10 codes from electronic health records, a total of > 11,000 features using the UK Biobank dataset. We used eXtreme Gradient Boosting (XGBoost) and SHapley Additive exPlanations (SHAP), which provided superior ML performance as well as aided ML model explanation. For participants age 40 and older, the area under the curve for AD was 0.88. For subjects of age 65 and older (late-onset AD), PRSs were the most important predictors. This is the first observation that PRSs constructed from the AD risk and AAO play more important roles than age in predicting AD. The ML model also identified important predictors from EHR, including urinary tract infection, syncope and collapse, chest pain, disorientation and hypercholesterolemia, for developing AD. Our ML model improved the accuracy of AD risk prediction by efficiently exploring numerous predictors and identified novel feature patterns
    corecore