216 research outputs found

    New Models for Large Prospective Studies: Is There a Better Way?

    Get PDF
    Large prospective cohort studies are critical for identifying etiologic factors for disease, but they require substantial long-term research investment. Such studies can be conducted as multisite consortia of academic medical centers, combinations of smaller ongoing studies, or a single large site such as a dominant regional health-care provider. Still another strategy relies upon centralized conduct of most or all aspects, recruiting through multiple temporary assessment centers. This is the approach used by a large-scale national resource in the United Kingdom known as the “UK Biobank,” which completed recruitment/examination of 503,000 participants between 2007 and 2010 within budget and ahead of schedule. A key lesson from UK Biobank and similar studies is that large studies are not simply small studies made large but, rather, require fundamentally different approaches in which “process” expertise is as important as scientific rigor. Embedding recruitment in a structure that facilitates outcome determination, utilizing comprehensive and flexible information technology, automating biospecimen processing, ensuring broad consent, and establishing essentially autonomous leadership with appropriate oversight are all critical to success. Whether and how these approaches may be transportable to the United States remain to be explored, but their success in studies such as UK Biobank makes a compelling case for such explorations to begin

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    A meta-analysis of individual participant data reveals an association between circulating levels of IGF-I and prostate cancer risk

    Get PDF
    The role of insulin-like growth factors (IGF) in prostate cancer development is not fully understood. To investigate the association between circulating concentrations of IGFs (IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3) and prostate cancer risk, we pooled individual participant data from 17 prospective and two cross-sectional studies, including up to 10,554 prostate cancer cases and 13,618 control participants. Conditional logistic regression was used to estimate the ORs for prostate cancer based on the study-specific fifth of each analyte. Overall, IGF-I, IGF-II, IGFBP-2, and IGFBP-3 concentrations were positively associated with prostate cancer risk (Ptrend all ≤ 0.005), and IGFBP-1 was inversely associated weakly with risk (Ptrend = 0.05). However, heterogeneity between the prospective and cross-sectional studies was evident (Pheterogeneity = 0.03), unless the analyses were restricted to prospective studies (with the exception of IGF-II, Pheterogeneity = 0.02). For prospective studies, the OR for men in the highest versus the lowest fifth of each analyte was 1.29 (95% confidence interval, 1.16-1.43) for IGF-I, 0.81 (0.68-0.96) for IGFBP-1, and 1.25 (1.12-1.40) for IGFBP-3. These associations did not differ significantly by time-to-diagnosis or tumor stage or grade. After mutual adjustment for each of the other analytes, only IGF-I remained associated with risk. Our collaborative study represents the largest pooled analysis of the relationship between prostate cancer risk and circulating concentrations of IGF-I, providing strong evidence that IGF-I is highly likely to be involved in prostate cancer development

    High-throughput gene discovery in the rat

    Get PDF
    The rat is an important animal model for human diseases and is widely used in physiology. In this article we present a new strategy for gene discovery based on the production of ESTs from serially subtracted and normalized cDNA libraries, and we describe its application for the development of a comprehensive nonredundant collection of rat ESTs. Our new strategy appears to yield substantially more EST clusters per ESTs sequenced than do previous approaches that did not use serial subtraction. However, multiple rounds of library subtraction resulted in high frequencies of otherwise rare internally primed cDNAs, defining the limits of this powerful approach. To date, we have generated >200,000 3′ ESTs from >100 cDNA libraries representing a wide range of tissues and developmental stages of the laboratory rat. Most importantly, we have contributed to ∼50,000 rat UniGene clusters. We have identified, arrayed, and derived 5′ ESTs from >30,000 unique rat cDNA clones. Complete information, including radiation hybrid mapping data, is also maintained locally at http://genome.uiowa.edu/clcg.html. All of the sequences described in this article have been submitted to the dbEST division of the NCBI
    corecore