11 research outputs found

    Validation of fecal glucocorticoid metabolites as non-invasive markers for monitoring stress in common buzzards (Buteo buteo)

    Get PDF
    This article belongs to the Special Issue titled 'Behavioural Endocrinology: Applications for Wildlife Management'.DATA AVAILABILITY STATEMENT : All raw data is provided in the Appendix A and Supplementary Materials.SUPPLEMENTARY MATERIAL : TABLE S1: Results of blood examination (n = 6) in female (F1, F2, F3) and male (M1, M2, M3) animals, TABLE S2: Results of X-rays for female (F1, F2, F3) and male (M1, M2, M3) animals (n = 6).For wild animals, being in captivity in wildlife centers can cause considerable stress. Therefore, it is necessary to establish and validate non-invasive tools to measure chronic stress during rehabilitation. Eight Common Buzzards which lived in permanent husbandry were placed individually into prepared aviaries and their feces were collected before, during and after a stress event for biological validation over a period of seven days. The extracted fecal glucocorticoid metabolites (fGCMs) were analyzed with three different enzyme immune assays (EIA) to find the most suitable one. Additionally, we aimed to investigate the stability of fGCM levels after defecation because further metabolization by bacterial enzymes can lead to changed results. The Cortisone-EIA performed best in males and females and showed that the stress event led to an fGCM increase of 629% (557% in females and 702% in males) in relation to basal values. We found no significant differences between the sexes, but observed significant differences between different times of day. FGCM concentration significantly changed after eight hours at room temperature. Our study successfully validated the non-invasive measurement of fGCM as a stress indicator in Common Buzzards and could therefore lay the foundation for future studies providing new insights for animal welfare research in Buzzards.The Verein der Förderer der Wildtierforschung and the Deutscher Falkenorden.https://www.mdpi.com/journal/animalsMammal Research InstituteSDG-03:Good heatlh and well-beingSDG-15:Life on lan

    Validation of Fecal Glucocorticoid Metabolites as Non-Invasive Markers for Monitoring Stress in Common Buzzards (<i>Buteo buteo</i>)

    No full text
    For wild animals, being in captivity in wildlife centers can cause considerable stress. Therefore, it is necessary to establish and validate non-invasive tools to measure chronic stress during rehabilitation. Eight Common Buzzards which lived in permanent husbandry were placed individually into prepared aviaries and their feces were collected before, during and after a stress event for biological validation over a period of seven days. The extracted fecal glucocorticoid metabolites (fGCMs) were analyzed with three different enzyme immune assays (EIA) to find the most suitable one. Additionally, we aimed to investigate the stability of fGCM levels after defecation because further metabolization by bacterial enzymes can lead to changed results. The Cortisone-EIA performed best in males and females and showed that the stress event led to an fGCM increase of 629% (557% in females and 702% in males) in relation to basal values. We found no significant differences between the sexes, but observed significant differences between different times of day. FGCM concentration significantly changed after eight hours at room temperature. Our study successfully validated the non-invasive measurement of fGCM as a stress indicator in Common Buzzards and could therefore lay the foundation for future studies providing new insights for animal welfare research in Buzzards

    Endothelial protein kinase D1 is a major regulator of post-traumatic hyperinflammation

    No full text
    Trauma is a major cause of death worldwide. The post-traumatic immune response culminates in the release of pro-inflammatory mediators, translating in the infiltration of neutrophils (PMNs) at injury sites. The extent of this inflammation is determined by multiple factors, such as PMN adhesion to the endothelium, transendothelial migration, endothelial barrier integrity as well as PMN swarming, mass infiltration and activation. This process is initiated by secondary lipid mediators, such as leukotriene B4 (LTB4). We here provide evidence that Protein kinase D1 (PRKD1) in endothelial cells is implicated in all these processes. Endothelial PRKD1 is activated by pro-inflammatory stimuli and amplifies PMN-mediated inflammation by upregulation of cytokine and chemokines as well as adhesion molecules, such as ICAM-1, VCAM-1 and E-selectin. This induces enhanced PMN adhesion and trans-migration. PRKD1 activation also destabilizes endothelial VE-cadherin adhesion complexes and thus the endothelial barrier, fostering PMN infiltration. We even describe a yet unrecognized PRKD1-dependant mechanism to induce biosynthesis of the PMN-swarming mediator LTB4 directed via intercellular communication through small extracellular vesicles (sEVs) and enhanced CXCL8 secretion from activated endothelial cells. These endothelial sEVs transfer the LTB4 biosynthesis enzyme LTA4 hydrolase (LTA4H) to prime PMNs, while initiating biosynthesis also requires additional signals, like CXCL8. We further demonstrate the respective LTA4H-positive sEVs in the serum of polytrauma patients, peaking 12 h post injury. Therefore, PRKD1 is a key regulator in the coordinated communication of the endothelium with PMNs and a vital signaling node during post-traumatic inflammation

    Tracing elevational changes in microbial life and organic carbon sources in soils of the Atacama Desert

    No full text
    The Atacama Desert frequently serves as model system for tracing life under extremely dry conditions. We hypothesized that traces of life in the Atacama Desert follow distinct micro- and macro-scale gradients such as soil depth and elevation, respectively. Different depth intervals of surface soils (0–1, 1–5, and 5–10 cm) were sampled at five sites along an elevational transect near the Quebrada Aroma, spanning from the hyperarid core of the desert towards the arid Western Andean Precordillera (1300 to 2700 m a.s.l.), and from one additional site in the hyperarid core near Yungay. We determined the contents of major elements, pedogenic minerals and oxides, organic carbon (OC), and its δ13C and δ15N isotopic composition. The presence of living microorganisms was assessed by cultivation, and bacterial community composition was analyzed based on 16S rRNA gene sequencing. Additional information about past and present plant and microbial life was obtained from lipid biomarker analysis. We did not detect consistent micro-scale distributions for most of these proxies within the soils. However, concentrations of OC and of long-chain, plant wax-derived n-alkanes increased in soils along the aridity gradient towards the wetter sites, indicating the presence of past life at places presently not covered by vegetation. Likewise, bacterial abundance and diversity decreased as hyperaridity increased and the microbial community composition changed along the transect, becoming enriched in Actinobacteria. The distributional patterns of phospholipid fatty acids (PLFAs) confirmed the larger bacterial diversity at the higher, more humid sites compared to the drier ones. Archaeal isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) and bacterial branched (br)GDGTs, which can also indicate past life, did not follow a clear elevational trend and were absent at the driest site. Taken together, plant-derived and microbiological markers follow primarily the macro-scaled elevation and aridity gradient. Viable bacteria are present even at the driest sites, while detected biomolecules also indicate past life. The detection of past plant life in nowadays apparently lifeless regions suggests that conditions for life were less hostile in former times

    Data from: Phylogenomics resolves the timing and pattern of insect evolution

    No full text
    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects

    Data from: Phylogenomics resolves the timing and pattern of insect evolution

    No full text
    Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects

    Phylogenomics Resolves The Timing And Pattern Of Insect Evolution: Supplementary File Archives.

    No full text
    Phylogenomics Resolves The Timing And Pattern Of Insect Evolution: Supplementary File Archives. This file includes 14 supplementary archives which are in detail described in the README
    corecore