100 research outputs found

    Ein mathematisches Verfahren zur Detektion a priori unbekannter Signalverläufe in der funktionellen Magnetresonanztomographie

    Get PDF
    Die funktionelle Magnetresonanztomographie (fMRT) ist ein nicht-invasives Verfahren, das es ermöglicht, die Reizverarbeitung im Gehirn zu visualisieren. Für die statistische Analyse der Daten werden standardmäßig hypothesengeleitete Auswerteverfahren auf Basis des allgemeinen linearen Modells (general linear model, GLM) verwendet. Da der Signalanstieg in den Arealen sehr gering ist, muss, um in einem Experiment, das mit der Methode des GLMs ausgewertet werden soll, die Ruhe- und Aktivitätsbedingung mehrere Male wiederholt werden, um das erhaltene Signal besser vom Hintergrundrauschen trennen zu können. In bestimmten Fällen neuronaler Aktivität kann ein Stimulus nicht mehrere Male wiederholt werden, zum Beispiel nach Präsentation eines Reizes durch den ein sensorisches System für längere Zeit verändert wird (z.B. durch Adaptation). Die Methode der Independent Component Analysis (ICA) ist ein datengeleitetes Auswerteverfahren, das es ermöglicht Bilddaten so auszuwerten, dass a priori keine Hypothese über den Verlauf der Zeitkurve oder die Signalintensität bekannt sein muss. In dieser Arbeit konnte gezeigt werden, dass die ICA als datengeleitete Analysemethode reliable Ergebnisse sowohl im Bereich der trigeminalen Stimulation in fMRT Experimenten, als auch im relativ neuen Forschungsfeld der pharmakologischen Stimulation in der funktionellen Bildgebung liefert. Das Auswerteverfahren der ICA stellt somit eine vielversprechende Bereicherung der fMRT-Methodik dar

    Fetal eye movements on magnetic resonance imaging.

    Get PDF
    OBJECTIVES: Eye movements are the physical expression of upper fetal brainstem function. Our aim was to identify and differentiate specific types of fetal eye movement patterns using dynamic MRI sequences. Their occurrence as well as the presence of conjugated eyeball motion and consistently parallel eyeball position was systematically analyzed. METHODS: Dynamic SSFP sequences were acquired in 72 singleton fetuses (17-40 GW, three age groups [17-23 GW, 24-32 GW, 33-40 GW]). Fetal eye movements were evaluated according to a modified classification originally published by Birnholz (1981): Type 0: no eye movements; Type I: single transient deviations; Type Ia: fast deviation, slower reposition; Type Ib: fast deviation, fast reposition; Type II: single prolonged eye movements; Type III: complex sequences; and Type IV: nystagmoid. RESULTS: In 95.8% of fetuses, the evaluation of eye movements was possible using MRI, with a mean acquisition time of 70 seconds. Due to head motion, 4.2% of the fetuses and 20.1% of all dynamic SSFP sequences were excluded. Eye movements were observed in 45 fetuses (65.2%). Significant differences between the age groups were found for Type I (p = 0.03), Type Ia (p = 0.031), and Type IV eye movements (p = 0.033). Consistently parallel bulbs were found in 27.3-45%. CONCLUSIONS: In human fetuses, different eye movement patterns can be identified and described by MRI in utero. In addition to the originally classified eye movement patterns, a novel subtype has been observed, which apparently characterizes an important step in fetal brainstem development. We evaluated, for the first time, eyeball position in fetuses. Ultimately, the assessment of fetal eye movements by MRI yields the potential to identify early signs of brainstem dysfunction, as encountered in brain malformations such as Chiari II or molar tooth malformations

    MR-based morphometry of the posterior fossa in fetuses with neural tube defects of the spine.

    Get PDF
    OBJECTIVES: In cases of "spina bifida," a detailed prenatal imaging assessment of the exact morphology of neural tube defects (NTD) is often limited. Due to the diverse clinical prognosis and prenatal treatment options, imaging parameters that support the prenatal differentiation between open and closed neural tube defects (ONTDs and CNTDs) are required. This fetal MR study aims to evaluate the clivus-supraocciput angle (CSA) and the maximum transverse diameter of the posterior fossa (TDPF) as morphometric parameters to aid in the reliable diagnosis of either ONTDs or CNTDs. METHODS: The TDPF and the CSA of 238 fetuses (20-37 GW, mean: 28.36 GW) with a normal central nervous system, 44 with ONTDS, and 13 with CNTDs (18-37 GW, mean: 24.3 GW) were retrospectively measured using T2-weighted 1.5 Tesla MR -sequences. RESULTS: Normal fetuses showed a significant increase in the TDPF (r = .956; p<.001) and CSA (r = .714; p<.001) with gestational age. In ONTDs the CSA was significantly smaller (p<.001) than in normal controls and CNTDs, whereas in CNTDs the CSA was not significantly smaller than in controls (p = .160). In both ONTDs and in CNTDs the TDPF was significantly different from controls (p<.001). CONCLUSIONS: The skull base morphology in fetuses with ONTDs differs significantly from cases with CNTDs and normal controls. This is the first study to show that the CSA changes during gestation and that it is a reliable imaging biomarker to distinguish between ONTDs and CNTDs, independent of the morphology of the spinal defect

    Severity of olfactory deficits is reflected in functional brain networks-An fMRI study

    Get PDF
    Even though deficits in olfactory function affect a considerable part of the population, the neuronal basis of olfactory deficits remains scarcely investigated. To achieve a better understanding of how smell loss affects neural activation patterns and functional networks, we set out to investigate patients with olfactory dysfunction using functional magnetic resonance imaging (fMRI) and olfactory stimulation. We used patients' scores on a standardized olfactory test as continuous measure of olfactory function. 48 patients (mean olfactory threshold discrimination identification (TDI) score=16.33, SD=6.4, range 6 - 28.5) were investigated. Overall, patients showed piriform cortex activation during odor stimulation compared to pure sniffing. Group independent component analysis indicated that the recruitment of three networks during odor stimulation was correlated with olfactory function: a sensory processing network (including regions such as insula, thalamus and piriform cortex), a cerebellar network and an occipital network. Interestingly, recruitment of these networks during pure sniffing was related to olfactory function as well. Our results support previous findings that sniffing alone can activate olfactory regions. Extending this, we found that the severity of olfactory deficits is related to the extent to which neural networks are recruited both during olfactory stimulation and pure sniffing. This indicates that olfactory deficits are not only reflected in changes in specific olfactory areas but also in the recruitment of occipital and cerebellar networks. These findings pave the way for future investigations on whether characteristics of these networks might be of use for the prediction of disease prognosis or of treatment success

    High correlation of temporal muscle thickness with lumbar skeletal muscle cross-sectional area in patients with brain metastases.

    Get PDF
    OBJECTIVES: This study aimed to assess the correlation of temporal muscle thickness (TMT), measured on routine cranial magnetic resonance (MR) images, with lumbar skeletal muscles obtained on computed tomography (CT) images in brain metastasis patients to establish a new parameter estimating skeletal muscle mass on brain MR images. METHODS: We retrospectively analyzed the cross-sectional area (CSA) of skeletal muscles at the level of the third lumbar vertebra on computed tomography scans and correlated these values with TMT on MR images of the brain in two independent cohorts of 93 lung cancer and 61 melanoma patients (overall: 154 patients) with brain metastases. RESULTS: Pearson correlation revealed a strong association between mean TMT and CSA in lung cancer and melanoma patients with brain metastases (0.733; p<0.001). The two study cohorts did not differ significantly in patient characteristics, including age (p = 0.661), weight (p = 0.787), and height (p = 0.123). However, TMT and CSA measures differed significantly between male and female patients in both lung cancer and melanoma patients with brain metastases (p<0.001). CONCLUSION: Our data indicate that TMT, measured on routine cranial MR images, is a useful surrogate parameter for the estimation of skeletal muscle mass in patients with brain metastases. Thus, TMT may be useful for prognostic assessment, treatment considerations, and stratification or a selection factor for clinical trials in patients with brain metastases. Further studies are needed to assess the association between TMT and clinical frailty parameters, and the usefulness of TMT in patients with primary brain tumors

    Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases.

    Get PDF
    OBJECTIVES: To evaluate the prognostic relevance of temporal muscle thickness (TMT) in brain metastasis patients. METHODS: We retrospectively analysed TMT on magnetic resonance (MR) images at diagnosis of brain metastasis in two independent cohorts of 188 breast cancer (BC) and 247 non-small cell lung cancer (NSCLC) patients (overall: 435 patients). RESULTS: Survival analysis using a Cox regression model showed a reduced risk of death by 19% with every additional millimetre of baseline TMT in the BC cohort and by 24% in the NSCLC cohort. Multivariate analysis included TMT and diagnosis-specific graded prognostic assessment (DS-GPA) as covariates in the BC cohort (TMT: HR 0.791/CI [0.703-0.889]/p < 0.001; DS-GPA: HR 1.433/CI [1.160-1.771]/p = 0.001), and TMT, gender and DS-GPA in the NSCLC cohort (TMT: HR 0.710/CI [0.646-0.780]/p < 0.001; gender: HR 0.516/CI [0.387-0.687]/p < 0.001; DS-GPA: HR 1.205/CI [1.018-1.426]/p = 0.030). CONCLUSION: TMT is easily and reproducibly assessable on routine MR images and is an independent predictor of survival in patients with newly diagnosed brain metastasis from BC and NSCLC. TMT may help to better define frail patient populations and thus facilitate patient selection for therapeutic measures or clinical trials. Further prospective studies are needed to correlate TMT with other clinical frailty parameters of patients. KEY POINTS: • TMT has an independent prognostic relevance in brain metastasis patients. • It is an easily and reproducibly parameter assessable on routine cranial MRI. • This parameter may aid in patient selection and stratification in clinical trials. • TMT may serve as surrogate marker for sarcopenia

    Влияние диаметра центрального отверстия горизонтальных ребер емкости объемом 60 литров на ее среднюю производительность

    Get PDF
    В данной работе представлена математическая модель нестационарного процесса заполнения вертикальных погружных емкостей газообразным UF6. Приведены результаты расчетов средней производительности, степени и времени заполнения емкости объемом 6·10-2 м3 с горизонтальным оребрением при изменении диаметра центрального отверстия ребер. Показано, что емкость объемом 6·10-2 м3 имеет максимальную среднюю производительность и минимальное время заполнения при диаметре центрального отверстия горизонтальных ребер 6,4·10-2 м.The mathematical model of non-stationary filling of vertical submerged tanks with gaseous uranium hexafluoride is presented in the paper. There are calculations of the average productivity, heat exchange area, filling time of horizontal ribbing tank with volume 6·10-2 m3 with change central hole diameter of the ribs. We have demonstrated that maximum average productivity and a minimum filling time are reached for the tank with volume 6·10-2 m3 having central hole diameter of horizontal ribs 6,4·10-2 m

    More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis

    Get PDF
    Correction: Chemical Senses, Volume 46, 2021, bjab050, https://doi.org/10.1093/chemse/bjab050 Published: 08 December 2021Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change +/- 100) revealed a mean reduction of smell (-79.7 +/- 28.7, mean +/- standard deviation), taste (-69.0 +/- 32.6), and chemesthetic (-37.3 +/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis.The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms.Peer reviewe
    corecore