92 research outputs found

    Genetic islands of Streptococcus agalactiae strains NEM316 and 2603VR and their presence in other Group B Streptococcal strains

    Get PDF
    BACKGROUND: Streptococcus agalactiae (Group B Streptococcus; GBS) is a major contributor to obstetric and neonatal bacterial sepsis. Serotype III strains cause the majority of late-onset sepsis and meningitis in babies, and thus appear to have an enhanced invasive capacity compared with the other serotypes that cause disease predominantly in immunocompromised pregnant women. We compared the serotype III and V whole genome sequences, strains NEM316 and 2603VR respectively, in an attempt to identify genetic attributes of strain NEM316 that might explain the propensity of strain NEM316 to cause late-onset disease in babies. Fourteen putative pathogenicity islands were described in the strain NEM316 whole genome sequence. Using PCR- and targeted microarray- strategies, the presence of these islands were assessed in a diverse strain collection including 18 colonizing isolates from healthy pregnant women, and 13 and 8 invasive isolates from infants with early- and late-onset sepsis, respectively. RESULTS: Side-by-side comparison of the strain NEM316 and strain 2603VR genomes revealed that they are extremely similar, with the only major difference being the capsulation loci and mobile genetic elements. PCR and Comparative Genome Hybridization (CGH) were used to define the presence of each island in 39 GBS isolates. Only islands I, VI, XII, and possibly X, met criteria of a true pathogenicity island, but no significant correlation was found between the presence of any of the fourteen islands and whether the strains were invasive or colonizing. Possible associations were seen between the presence of island VI and late-onset sepsis, and island X and early-onset sepsis, which warrant further investigation. CONCLUSION: The NEM316 and 2603VR strains are remarkable in that their whole genome sequences are so similar, suggesting that the capsulation loci or other genetic differences, such as pathogenicity islands, are the main determinants of the propensity of serotype III strains to cause late-onset disease. This study supports the notion that GBS strain NEM316 has four putative pathogenicity islands, but none is absolutely necessary for disease causation, whether early- or late-onset sepsis. Mobile genetic elements are a common feature of GBS isolates, with each strain having its own peculiar burden of transposons, phages, integrases and integrated plasmids. The majority of these are unlikely to influence the disease capacity of an isolate. Serotype associated disease phenotypes may thus be solely related to differences in the capsulation loci

    The small FNR regulon of Neisseria gonorrhoeae: comparison with the larger Escherichia coli FNR regulon and interaction with the NarQ-NarP regulon

    Get PDF
    BACKGROUND: Neisseria gonorrhoeae can survive during oxygen starvation by reducing nitrite to nitrous oxide catalysed by the nitrite and nitric oxide reductases, AniA and NorB. The oxygen-sensing transcription factor, FNR, is essential for transcription activation at the aniA promoter, and full activation also requires the two-component regulatory system, NarQ-NarP, and the presence of nitrite. The only other gene known to be activated by the gonococcal FNR is ccp encoding a cytochrome c peroxidase, and no FNR-repressed genes have been reported in the gonococcus. In contrast, FNR acts as both an activator and repressor involved in the control of more than 100 operons in E. coli regulating major changes in the adaptation from aerobic to anaerobic conditions. In this study we have performed a microarray-led investigation of the FNR-mediated responses in N. gonorrhoeae to determine the physiological similarities and differences in the role of FNR in cellular regulation in this species. RESULTS: Microarray experiments show that N. gonorrhoeae FNR controls a much smaller regulon than its E. coli counterpart; it activates transcription of aniA and thirteen other genes, and represses transcription of six genes that include dnrN and norB. Having previously shown that a single amino acid substitution is sufficient to enable the gonococcal FNR to complement an E. coli fnr mutation, we investigated whether the gonococcal NarQ-NarP can substitute for E. coli NarX-NarL or NarQ-NarP. A plasmid expressing gonococcal narQ-narP was unable to complement E. coli narQP or narXL mutants, and was insensitive to nitrate or nitrite. Mutations that progressively changed the periplasmic nitrate sensing region, the P box, of E. coli NarQ to the sequence of the corresponding region of gonococcal NarQ resulted in loss of transcription activation in response to the availability of either nitrate or nitrite. However, the previously reported ligand-insensitive ability of gonococcal NarQ, the "locked on" phenotype, to activate either E. coli NarL or NarP was confirmed. CONCLUSION: Despite the sequence similarities between transcription activators of E. coli and N. gonorrhoeae, these results emphasise the fundamental differences in transcription regulation between these two types of pathogenic bacteria

    Human Cardiac-Specific cDNA Array for Idiopathic Dilated Cardiomyopathy: Sex-Related Differences

    Get PDF
    Idiopathic dilated cardiomyopathy (IDCM) constitutes a large portion of patients with heart failure of unknown etiology. Up to 50% of all transplant recipients carry this clinical diagnosis. Female-specific gene expression in IDCM has not been explored. We report sex-related differences in the gene expression profile of ventricular myocardium from patients undergoing cardiac transplantation. We produced and sequenced subtractive cDNA libraries, using human left ventricular myocardium obtained from male transplant recipients with IDCM and nonfailing human heart donors. With the resulting sequence data, we generated a custom human heart failure microarray for IDCM containing 1,145 cardiac-specific oligonucleotide probes. This array was used to characterize RNA samples from female IDCM transplant recipients. We identified a female gene expression pattern that consists of 37 upregulated genes and 18 downregulated genes associated with IDCM. Upon functional analysis of the gene expression pattern, deregulated genes unique to female IDCM were those that are involved in energy metabolism and regulation of transcription and translation. For male patients we found deregulation of genes related to muscular contraction. These data suggest that 1) the gene expression pattern we have detected for IDCM may be specific for this disease and 2) there is a sex-specific profile to IDCM. Our observations further suggest for the first time ever novel targets for treatment of IDCM in women and men

    Targeting a highly repetitive genomic sequence for sensitive and specific molecular detection of the filarial parasite Mansonella perstans from human blood and mosquitoes

    Get PDF
    Background: Mansonella perstans is among the most neglected of the neglected tropical diseases and is believed to cause more human infections than any other filarial pathogen in Africa. Based largely upon assumptions of limited infection-associated morbidity, this pathogen remains understudied, and many basic questions pertaining to its pathogenicity, distribution, prevalence, and vector-host relationships remain unanswered. However, in recent years, mounting evidence of the potential for increased Mansonella infection-associated disease has sparked a renewal in research interest. This, in turn, has produced a need for improved diagnostics, capable of providing more accurate pictures of infection prevalence, pathogen distribution, and vector-host interactions. Methodology/Principal findings: Utilizing a previously described pipeline for the discovery of optimal molecular diagnostic targets, we identified a repetitive DNA sequence, and developed a corresponding assay, which allows for the sensitive and species-specific identification of M. perstans in human blood samples. Testing also demonstrated the ability to utilize this assay for the detection of M. perstans in field-collected mosquito samples. When testing both sample types, our repeat-targeting index assay outperformed a ribosomal sequence-targeting reference assay, facilitating the identification of additional M. perstans-positive samples falsely characterized as “negative” using the less sensitive detection method. Conclusions/Significance: Through the development of an assay based upon the systematic identification of an optimal DNA target sequence, our novel diagnostic assay will provide programmatic efforts with a sensitive and specific testing platform that is capable of accurately mapping M. perstans infection and determining prevalence. Furthermore, with the added ability to identify the presence of M. perstans in mosquito samples, this assay will help to define our knowledge of the relationships that exist between this pathogen and the various geographically relevant mosquito species, which have been surmised to represent potential secondary vectors under certain conditions. Detection of M. perstans in mosquitoes will also demonstrate proof-of-concept for the mosquito-based monitoring of filarial pathogens not vectored primarily by mosquitoes, an approach expanding opportunities for integrated surveillance

    Options for reducing uncertainty in impact classification for alien species

    Get PDF
    Impact assessment is an important and cost-effective tool for assisting in the identification and prioritization of invasive alien species. With the number of alien and invasive alien species expected to increase, reliance on impact assessment tools for the identification of species that pose the greatest threats will continue to grow. Given the importance of such assessments for management and resource allocation, it is critical to understand the uncertainty involved and what effect this may have on the outcome. Using an uncertainty typology and insects as a model taxon, we identified and classified the causes and types of uncertainty when performing impact assessments on alien species. We assessed 100 alien insect species across two rounds of assessments with each species independently assessed by two assessors. Agreement between assessors was relatively low for all three impact classification components (mechanism, severity, and confidence) after the first round of assessments. For the second round, we revised guidelines and gave assessors access to each other’s assessments which improved agreement by between 20% and 30% for impact mechanism, severity, and confidence. Of the 12 potential reasons for assessment discrepancies identified a priori, 11 were found to occur. The most frequent causes (and types) of uncertainty (i.e., differences between assessment outcomes for the same species) were as follows: incomplete information searches (systematic error), unclear mechanism and/or extent of impact (subjective judgment due to a lack of knowledge), and limitations of the assessment framework (context dependence). In response to these findings, we identify actions that may reduce uncertainty in the impact assessment process, particularly for assessing speciose taxa with diverse life histories such as Insects. Evidence of environmental impact was available for most insect species, and (of the non-random original subset of species assessed) 14 of those with evidence were identified as high impact species (with either major or massive impact). Although uncertainty in risk assessment, including impact assessments, can never be eliminated, identifying, and communicating its cause and variety is a first step toward its reduction and a more reliable assessment outcome, regardless of the taxa being assessed

    Undertaking Rehabilitation Research During the COVID-19 Pandemic: Emergent Strategies From a Trainee-Faculty Workshop

    Get PDF
    BackgroundThe COVID-19 pandemic has disrupted everyday rehabilitation research. Many academic institutions have halted in-person human research including rehabilitation sciences. Researchers are faced with several barriers to continuing their research programs. The purpose of this perspective article is to report the results of an interdisciplinary workshop aimed at understanding the challenges and corresponding strategies for conducting rehabilitation research during the COVID-19 pandemic.MethodsTwenty-five rehabilitation researchers (17 trainees and eight faculty) attended a 2-h facilitated online workshop in to discuss challenges and strategies they had experienced and employed to conduct rehabilitation research during the COVID-19 pandemic.ResultsRehabilitation researchers reported challenges with (1) pandemic protocol adjustments, (2) participant accessibility, and (3) knowledge dissemination, along with corresponding strategies to these challenges. Researchers experienced disruptions in study outcomes and intervention protocols to adhere to public health guidelines and have suggested implementing novel virtual approaches and study toolkits to facilitate offsite assessment. Participant accessibility could be improved by engaging community stakeholders in protocol revisions to ensure equity, safety, and feasibility. Researchers also experienced barriers to virtual conferences and publication, suggested opportunities for smaller networking events, and revisiting timeframes for knowledge dissemination.ConclusionThis perspective article served as a catalyst for discussion among rehabilitation researchers to identify novel and creative approaches that address the complexities of conducting rehabilitation research during the COVID-19 pandemic and beyond

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants

    Get PDF
    Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Prostate cancer is a polygenic disease with a large heritable component. A number of common, low-penetrance prostate cancer risk loci have been identified through GWAS. Here we apply the Bayesian multivariate variable selection algorithm JAM to fine-map 84 prostate cancer susceptibility loci, using summary data from a large European ancestry meta-analysis. We observe evidence for multiple independent signals at 12 regions and 99 risk signals overall. Only 15 original GWAS tag SNPs remain among the catalogue of candidate variants identified; the remainder are replaced by more likely candidates. Biological annotation of our credible set of variants indicates significant enrichment within promoter and enhancer elements, and transcription factor-binding sites, including AR, ERG and FOXA1. In 40 regions at least one variant is colocalised with an eQTL in prostate cancer tissue. The refined set of candidate variants substantially increase the proportion of familial relative risk explained by these known susceptibility regions, which highlights the importance of fine-mapping studies and has implications for clinical risk profiling. © 2018 The Author(s).Peer reviewe

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio
    corecore